This file is indexed.

/usr/include/NTL/g_lip.h is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#ifdef NTL_SINGLE_MUL
#error "do not set NTL_SINGLE_MUL when NTL_GMP_LIP is set"
#endif

#if 1

typedef void *_ntl_gbigint;

#else

/*
 * This way of defining the bigint handle type is a bit non-standard,
 * but better for debugging.
 */

struct _ntl_gbigint_is_opaque { int _x_; };
typedef struct _ntl_gbigint_is_opaque * _ntl_gbigint;

#endif

#define NTL_SP_NBITS NTL_NBITS_MAX
#define NTL_SP_BOUND (1L << NTL_SP_NBITS)
#define NTL_SP_FBOUND ((double) NTL_SP_BOUND)

#define NTL_WSP_NBITS (NTL_BITS_PER_LONG-2)
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)

/* define the following so an error is raised */

#define NTL_RADIX ......
#define NTL_NBITSH ......
#define NTL_RADIXM ......
#define NTL_RADIXROOT ......
#define NTL_RADIXROOTM ......
#define NTL_FRADIX_INV ......




#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
extern "C" {
#endif


/***********************************************************************

   Basic Functions

***********************************************************************/
    


    void _ntl_gsadd(_ntl_gbigint a, long d, _ntl_gbigint *b);
       /* *b = a + d */

    void _ntl_gadd(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /*  *c = a + b */

    void _ntl_gsub(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a - b */

    void _ntl_gsubpos(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a - b; assumes a >= b >= 0 */

    void _ntl_gsmul(_ntl_gbigint a, long d, _ntl_gbigint *b);
       /* *b = d * a */

    void _ntl_gmul(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a * b */

    void _ntl_gsq(_ntl_gbigint a, _ntl_gbigint *c);
       /* *c = a * a */

    long _ntl_gsdiv(_ntl_gbigint a, long b, _ntl_gbigint *q);
       /* (*q) = floor(a/b) and a - floor(a/b)*(*q) is returned;
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_gdiv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *q, _ntl_gbigint *r);
       /* (*q) = floor(a/b) and (*r) = a - floor(a/b)*(*q);
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_gmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *r);
       /* same as _ntl_gdiv, but only remainder is computed */

    long _ntl_gsmod(_ntl_gbigint a, long d);
       /* same as _ntl_gsdiv, but only remainder is computed */

    void _ntl_gquickmod(_ntl_gbigint *r, _ntl_gbigint b);
       /* *r = *r % b; 
	  The division is performed in place (but may sometimes
	  assumes b > 0 and *r >= 0;
          cause *r to grow by one digit) */

/********************************************************************

   Shifting and bit manipulation

*********************************************************************/


    void _ntl_glshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
       /* *a = sign(n) * (|n| << k);
          shift is in reverse direction for negative k */

    void _ntl_grshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
       /* *a = sign(n) * (|n| >> k);
          shift is in reverse direction for negative k */
    
    long _ntl_gmakeodd(_ntl_gbigint *n);
       /*
          if (n != 0)
              *n = m;
              return (k such that n == 2 ^ k * m with m odd);
          else
              return (0); 
        */

    long _ntl_gnumtwos(_ntl_gbigint n);
        /* return largest e such that 2^e divides n, or zero if n is zero */

    long _ntl_godd(_ntl_gbigint a);
       /* returns 1 if n is odd and 0 if it is even */

    long _ntl_gbit(_ntl_gbigint a, long p);
       /* returns p-th bit of a, where the low order bit is indexed by 0;
          p out of range returns 0 */

    long _ntl_gsetbit(_ntl_gbigint *a, long p);
       /* returns original value of p-th bit of |a|, and replaces
          p-th bit of a by 1 if it was zero;
          error if p < 0 */

    long _ntl_gswitchbit(_ntl_gbigint *a, long p);
       /* returns original value of p-th bit of |a|, and switches
          the value of p-th bit of a;
          p starts counting at 0;
          error if p < 0 */


     void _ntl_glowbits(_ntl_gbigint a, long k, _ntl_gbigint *b);
        /* places k low order bits of |a| in b */ 

     long _ntl_gslowbits(_ntl_gbigint a, long k);
        /* returns k low order bits of |a| */

    long _ntl_gweights(long a);
        /* returns Hamming weight of |a| */

    long _ntl_gweight(_ntl_gbigint a);
        /* returns Hamming weight of |a| */

    void _ntl_gand(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` and `bits of |b|` */

    void _ntl_gor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` inclusive or `bits of |b|` */

    void _ntl_gxor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` exclusive or `bits of |b|` */




/************************************************************************

   Comparison

*************************************************************************/

    long _ntl_gcompare(_ntl_gbigint a, _ntl_gbigint b);
       /*
          if (a > b)
              return (1);
          if (a == b)
              return (0);
          if (a < b)
              return (-1);
         */

    long _ntl_gscompare(_ntl_gbigint a, long b);
       /* single-precision version of the above */

    long _ntl_giszero (_ntl_gbigint a);
       /* test for 0 */


    long _ntl_gsign(_ntl_gbigint a);
       /* 
          if (a > 0)
              return (1);
          if (a == 0)
              return (0);
          if (a < 0)
              return (-1);
        */

    void _ntl_gabs(_ntl_gbigint *a);
       /* *a = |a| */

    void _ntl_gnegate(_ntl_gbigint *a);
       /* *a = -a */

    void _ntl_gcopy(_ntl_gbigint a, _ntl_gbigint *b);
       /* *b = a;  */

    void _ntl_gswap(_ntl_gbigint *a, _ntl_gbigint *b);
       /* swap a and b (by swaping pointers) */

    long _ntl_g2log(_ntl_gbigint a);
       /* number of bits in |a|; returns 0 if a = 0 */

    long _ntl_g2logs(long a);
        /* single-precision version of the above */


/********************************************************************

   Conversion

*********************************************************************/
        
    void _ntl_gzero(_ntl_gbigint *a);
       /* *a = 0;  */

    void _ntl_gone(_ntl_gbigint *a);
       /* *a = 1 */

    void _ntl_gintoz(long d, _ntl_gbigint *a);
       /* *a = d;  */


    void _ntl_guintoz(unsigned long d, _ntl_gbigint *a);
       /* *a = d;  space is allocated  */

    long _ntl_gtoint(_ntl_gbigint a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */

    unsigned long _ntl_gtouint(_ntl_gbigint a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */

   


    double _ntl_gdoub(_ntl_gbigint n);
       /* converts a to a double;  no overflow check */

    long _ntl_ground_correction(_ntl_gbigint a, long k, long residual);
       /* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
          The result is what we should add to (a >> k) to round
          x = a/2^k to the nearest integer using IEEE-like rounding rules
          (i.e., round to nearest, and round to even to break ties).
          The result is either 0 or sign(a).
          If residual is not zero, it is as if x were replaced by
          x' = x + residual*2^{-(k+1)}.
          This can be used to break ties when x is exactly
          half way between two integers. */

    double _ntl_glog(_ntl_gbigint a);
       /* computes log(a), protecting against overflow */

    void _ntl_gdoubtoz(double a, _ntl_gbigint *x);
       /* x = floor(a);  */
    



/************************************************************************

   Square roots

*************************************************************************/


    long _ntl_gsqrts(long n);
       /* return floor(sqrt(n));  error raised in n < 0 */

    void _ntl_gsqrt(_ntl_gbigint n, _ntl_gbigint *r);
       /* *r =  floor(sqrt(n));  error raised in n < 0 */

/*********************************************************************
 
    Exponentiation
 
**********************************************************************/

   void _ntl_gexp(_ntl_gbigint a, long e, _ntl_gbigint *b);
       /* *b = a^e;  error raised if e < 0 */

   void _ntl_gexps(long a, long e, _ntl_gbigint *b);
       /* *b = a^e;  error raised if e < 0 */
       

/*********************************************************************

   Modular Arithmetic

   Addition, subtraction, multiplication, squaring division, inversion,
   and exponentiation modulo a positive modulus n, where all operands
   (except for the exponent in exponentiation) and results are in the
   range [0, n-1].   

   ALIAS RESTRICTION:  output parameters should not alias n

***********************************************************************/

    void _ntl_gaddmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a + b) % n */

    void _ntl_gsubmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a - b) % n */

    void _ntl_gsmulmod(_ntl_gbigint a, long b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a * b) % n */

    void _ntl_gmulmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a * b) % n */

    void _ntl_gsqmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a ^ 2) % n */

    void _ntl_ginvmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */

    void _ntl_gpowermod(_ntl_gbigint g, _ntl_gbigint e, _ntl_gbigint F,
                        _ntl_gbigint *h);

       /* *b = (a ^ e) % n; */




/**************************************************************************

   Euclidean Algorithms

***************************************************************************/
    void _ntl_ggcd(_ntl_gbigint m1, _ntl_gbigint m2, _ntl_gbigint *r);
       /* *r = greatest common divisor of m1 and m2; 
          uses binary gcd algorithm */


    void _ntl_gexteucl(_ntl_gbigint a, _ntl_gbigint *xa,
                 _ntl_gbigint b, _ntl_gbigint *xb,
                 _ntl_gbigint *d);
       /*
          *d = a * *xa + b * *xb = gcd(a, b);
          sets *d, *xa and *xb given a and b;
          uses Lehmer`s trick
        */


    long _ntl_ginv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /*
          if (a and b coprime)
          {
              *c = inv; 
              return(0);
          }
          else
          {
              *c = gcd(a, b);
              return(1);
          }
          
          where inv is such that (inv * a)  == 1 mod b;
          error raised if a < 0 or b <= 0
        */

     long _ntl_gxxratrecon(_ntl_gbigint x, _ntl_gbigint m,  
                      _ntl_gbigint a_bound, _ntl_gbigint b_bound,
                      _ntl_gbigint *a, _ntl_gbigint *b);

        /* rational reconstruction: see doc in ZZ.txt */


        
/**********************************************************************

    Storage Allocation

    These routines use malloc and free.

***********************************************************************/


    void _ntl_gsetlength(_ntl_gbigint *v, long len);
       /* Allocates enough space to hold a len-digit number,
          where each digit has NTL_NBITS bits.
          If space must be allocated, space for one extra digit
          is always allocated. */

    void _ntl_gfree(_ntl_gbigint *x);
       /* Free's space held by x, and sets x back to 0. */


/*******************************************************************

    Special routines

********************************************************************/

long _ntl_gsize(_ntl_gbigint n);
long _ntl_gisone(_ntl_gbigint n);

long _ntl_gsptest(_ntl_gbigint a);
long _ntl_gwsptest(_ntl_gbigint a);
long _ntl_gcrtinrange(_ntl_gbigint g, _ntl_gbigint a);

void _ntl_gfrombytes(_ntl_gbigint *x, const unsigned char *p, long n);
void _ntl_gbytesfromz(unsigned char *p, _ntl_gbigint a, long nn);


long _ntl_gblock_construct_alloc(_ntl_gbigint *x, long d, long n);
void _ntl_gblock_construct_set(_ntl_gbigint x, _ntl_gbigint *y, long i);
long _ntl_gblock_destroy(_ntl_gbigint x);
long _ntl_gblock_storage(long d);


void _ntl_gcrt_struct_init(void **crt_struct, long n, _ntl_gbigint p,
                          const long *primes);
void _ntl_gcrt_struct_insert(void *crt_struct, long i, _ntl_gbigint m);
void _ntl_gcrt_struct_free(void *crt_struct);
void _ntl_gcrt_struct_eval(void *crt_struct, _ntl_gbigint *t, const long *a);
long _ntl_gcrt_struct_special(void *crt_struct);

void _ntl_grem_struct_init(void **rem_struct, long n, _ntl_gbigint p,
                          const long *primes);
void _ntl_grem_struct_free(void *rem_struct);
void _ntl_grem_struct_eval(void *rem_struct, long *x, _ntl_gbigint a);




#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif


extern int _ntl_gmp_hack;

#define NTL_crt_struct_eval _ntl_gcrt_struct_eval
#define NTL_crt_struct_free _ntl_gcrt_struct_free
#define NTL_crt_struct_init _ntl_gcrt_struct_init
#define NTL_crt_struct_insert _ntl_gcrt_struct_insert
#define NTL_crt_struct_special _ntl_gcrt_struct_special
#define NTL_rem_struct_eval _ntl_grem_struct_eval
#define NTL_rem_struct_free _ntl_grem_struct_free
#define NTL_rem_struct_init _ntl_grem_struct_init
#define NTL_verylong _ntl_gbigint
#define NTL_z2log _ntl_g2log
#define NTL_zabs _ntl_gabs
#define NTL_zadd _ntl_gadd
#define NTL_zaddmod _ntl_gaddmod
#define NTL_zand _ntl_gand
#define NTL_zbit _ntl_gbit
#define NTL_zblock_construct_alloc _ntl_gblock_construct_alloc
#define NTL_zblock_construct_set _ntl_gblock_construct_set
#define NTL_zblock_destroy _ntl_gblock_destroy
#define NTL_zblock_storage _ntl_gblock_storage
#define NTL_zbytesfromz _ntl_gbytesfromz
#define NTL_zcompare _ntl_gcompare
#define NTL_zcopy _ntl_gcopy
#define NTL_zcrtinrange _ntl_gcrtinrange
#define NTL_zdiv _ntl_gdiv
#define NTL_zdoub _ntl_gdoub
#define NTL_zdoubtoz _ntl_gdoubtoz
#define NTL_zexp _ntl_gexp
#define NTL_zexps _ntl_gexps
#define NTL_zexteucl _ntl_gexteucl
#define NTL_zfree _ntl_gfree
#define NTL_zfrombytes _ntl_gfrombytes
#define NTL_zgcd _ntl_ggcd
#define NTL_zintoz _ntl_gintoz
#define NTL_zinv _ntl_ginv
#define NTL_zinvmod _ntl_ginvmod
#define NTL_zisone _ntl_gisone
#define NTL_ziszero _ntl_giszero
#define NTL_zlog _ntl_glog
#define NTL_zlowbits _ntl_glowbits
#define NTL_zlshift _ntl_glshift
#define NTL_zmakeodd _ntl_gmakeodd
#define NTL_zmod _ntl_gmod
#define NTL_zmul _ntl_gmul
#define NTL_zmulmod _ntl_gmulmod
#define NTL_znegate _ntl_gnegate
#define NTL_znumtwos _ntl_gnumtwos
#define NTL_zodd _ntl_godd
#define NTL_zone _ntl_gone
#define NTL_zor _ntl_gor
#define NTL_zpowermod _ntl_gpowermod
#define NTL_zquickmod _ntl_gquickmod
#define NTL_zround_correction _ntl_ground_correction
#define NTL_zrshift _ntl_grshift
#define NTL_zsadd _ntl_gsadd
#define NTL_zscompare _ntl_gscompare
#define NTL_zsdiv _ntl_gsdiv
#define NTL_zsetbit _ntl_gsetbit
#define NTL_zsetlength _ntl_gsetlength
#define NTL_zsign _ntl_gsign
#define NTL_zsize _ntl_gsize
#define NTL_zslowbits _ntl_gslowbits
#define NTL_zsmod _ntl_gsmod
#define NTL_zsmul _ntl_gsmul
#define NTL_zsmulmod _ntl_gsmulmod
#define NTL_zsptest _ntl_gsptest
#define NTL_zsq _ntl_gsq
#define NTL_zsqmod _ntl_gsqmod
#define NTL_zsqrt _ntl_gsqrt
#define NTL_zsqrts _ntl_gsqrts
#define NTL_zsub _ntl_gsub
#define NTL_zsubmod _ntl_gsubmod
#define NTL_zsubpos _ntl_gsubpos
#define NTL_zswap _ntl_gswap
#define NTL_zswitchbit _ntl_gswitchbit
#define NTL_ztoint _ntl_gtoint
#define NTL_ztouint _ntl_gtouint
#define NTL_zuintoz _ntl_guintoz
#define NTL_zweight _ntl_gweight
#define NTL_zweights _ntl_gweights
#define NTL_zwsptest _ntl_gwsptest
#define NTL_zxor _ntl_gxor
#define NTL_zxxratrecon _ntl_gxxratrecon
#define NTL_zzero _ntl_gzero

#define NTL_GMP_LIP