/usr/include/NTL/g_lip.h is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | #ifdef NTL_SINGLE_MUL
#error "do not set NTL_SINGLE_MUL when NTL_GMP_LIP is set"
#endif
#if 1
typedef void *_ntl_gbigint;
#else
/*
* This way of defining the bigint handle type is a bit non-standard,
* but better for debugging.
*/
struct _ntl_gbigint_is_opaque { int _x_; };
typedef struct _ntl_gbigint_is_opaque * _ntl_gbigint;
#endif
#define NTL_SP_NBITS NTL_NBITS_MAX
#define NTL_SP_BOUND (1L << NTL_SP_NBITS)
#define NTL_SP_FBOUND ((double) NTL_SP_BOUND)
#define NTL_WSP_NBITS (NTL_BITS_PER_LONG-2)
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)
/* define the following so an error is raised */
#define NTL_RADIX ......
#define NTL_NBITSH ......
#define NTL_RADIXM ......
#define NTL_RADIXROOT ......
#define NTL_RADIXROOTM ......
#define NTL_FRADIX_INV ......
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
extern "C" {
#endif
/***********************************************************************
Basic Functions
***********************************************************************/
void _ntl_gsadd(_ntl_gbigint a, long d, _ntl_gbigint *b);
/* *b = a + d */
void _ntl_gadd(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* *c = a + b */
void _ntl_gsub(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* *c = a - b */
void _ntl_gsubpos(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* *c = a - b; assumes a >= b >= 0 */
void _ntl_gsmul(_ntl_gbigint a, long d, _ntl_gbigint *b);
/* *b = d * a */
void _ntl_gmul(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* *c = a * b */
void _ntl_gsq(_ntl_gbigint a, _ntl_gbigint *c);
/* *c = a * a */
long _ntl_gsdiv(_ntl_gbigint a, long b, _ntl_gbigint *q);
/* (*q) = floor(a/b) and a - floor(a/b)*(*q) is returned;
error is raised if b == 0;
if b does not divide a, then sign(*q) == sign(b) */
void _ntl_gdiv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *q, _ntl_gbigint *r);
/* (*q) = floor(a/b) and (*r) = a - floor(a/b)*(*q);
error is raised if b == 0;
if b does not divide a, then sign(*q) == sign(b) */
void _ntl_gmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *r);
/* same as _ntl_gdiv, but only remainder is computed */
long _ntl_gsmod(_ntl_gbigint a, long d);
/* same as _ntl_gsdiv, but only remainder is computed */
void _ntl_gquickmod(_ntl_gbigint *r, _ntl_gbigint b);
/* *r = *r % b;
The division is performed in place (but may sometimes
assumes b > 0 and *r >= 0;
cause *r to grow by one digit) */
/********************************************************************
Shifting and bit manipulation
*********************************************************************/
void _ntl_glshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
/* *a = sign(n) * (|n| << k);
shift is in reverse direction for negative k */
void _ntl_grshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
/* *a = sign(n) * (|n| >> k);
shift is in reverse direction for negative k */
long _ntl_gmakeodd(_ntl_gbigint *n);
/*
if (n != 0)
*n = m;
return (k such that n == 2 ^ k * m with m odd);
else
return (0);
*/
long _ntl_gnumtwos(_ntl_gbigint n);
/* return largest e such that 2^e divides n, or zero if n is zero */
long _ntl_godd(_ntl_gbigint a);
/* returns 1 if n is odd and 0 if it is even */
long _ntl_gbit(_ntl_gbigint a, long p);
/* returns p-th bit of a, where the low order bit is indexed by 0;
p out of range returns 0 */
long _ntl_gsetbit(_ntl_gbigint *a, long p);
/* returns original value of p-th bit of |a|, and replaces
p-th bit of a by 1 if it was zero;
error if p < 0 */
long _ntl_gswitchbit(_ntl_gbigint *a, long p);
/* returns original value of p-th bit of |a|, and switches
the value of p-th bit of a;
p starts counting at 0;
error if p < 0 */
void _ntl_glowbits(_ntl_gbigint a, long k, _ntl_gbigint *b);
/* places k low order bits of |a| in b */
long _ntl_gslowbits(_ntl_gbigint a, long k);
/* returns k low order bits of |a| */
long _ntl_gweights(long a);
/* returns Hamming weight of |a| */
long _ntl_gweight(_ntl_gbigint a);
/* returns Hamming weight of |a| */
void _ntl_gand(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* c gets bit pattern `bits of |a|` and `bits of |b|` */
void _ntl_gor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* c gets bit pattern `bits of |a|` inclusive or `bits of |b|` */
void _ntl_gxor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/* c gets bit pattern `bits of |a|` exclusive or `bits of |b|` */
/************************************************************************
Comparison
*************************************************************************/
long _ntl_gcompare(_ntl_gbigint a, _ntl_gbigint b);
/*
if (a > b)
return (1);
if (a == b)
return (0);
if (a < b)
return (-1);
*/
long _ntl_gscompare(_ntl_gbigint a, long b);
/* single-precision version of the above */
long _ntl_giszero (_ntl_gbigint a);
/* test for 0 */
long _ntl_gsign(_ntl_gbigint a);
/*
if (a > 0)
return (1);
if (a == 0)
return (0);
if (a < 0)
return (-1);
*/
void _ntl_gabs(_ntl_gbigint *a);
/* *a = |a| */
void _ntl_gnegate(_ntl_gbigint *a);
/* *a = -a */
void _ntl_gcopy(_ntl_gbigint a, _ntl_gbigint *b);
/* *b = a; */
void _ntl_gswap(_ntl_gbigint *a, _ntl_gbigint *b);
/* swap a and b (by swaping pointers) */
long _ntl_g2log(_ntl_gbigint a);
/* number of bits in |a|; returns 0 if a = 0 */
long _ntl_g2logs(long a);
/* single-precision version of the above */
/********************************************************************
Conversion
*********************************************************************/
void _ntl_gzero(_ntl_gbigint *a);
/* *a = 0; */
void _ntl_gone(_ntl_gbigint *a);
/* *a = 1 */
void _ntl_gintoz(long d, _ntl_gbigint *a);
/* *a = d; */
void _ntl_guintoz(unsigned long d, _ntl_gbigint *a);
/* *a = d; space is allocated */
long _ntl_gtoint(_ntl_gbigint a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
unsigned long _ntl_gtouint(_ntl_gbigint a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
double _ntl_gdoub(_ntl_gbigint n);
/* converts a to a double; no overflow check */
long _ntl_ground_correction(_ntl_gbigint a, long k, long residual);
/* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
The result is what we should add to (a >> k) to round
x = a/2^k to the nearest integer using IEEE-like rounding rules
(i.e., round to nearest, and round to even to break ties).
The result is either 0 or sign(a).
If residual is not zero, it is as if x were replaced by
x' = x + residual*2^{-(k+1)}.
This can be used to break ties when x is exactly
half way between two integers. */
double _ntl_glog(_ntl_gbigint a);
/* computes log(a), protecting against overflow */
void _ntl_gdoubtoz(double a, _ntl_gbigint *x);
/* x = floor(a); */
/************************************************************************
Square roots
*************************************************************************/
long _ntl_gsqrts(long n);
/* return floor(sqrt(n)); error raised in n < 0 */
void _ntl_gsqrt(_ntl_gbigint n, _ntl_gbigint *r);
/* *r = floor(sqrt(n)); error raised in n < 0 */
/*********************************************************************
Exponentiation
**********************************************************************/
void _ntl_gexp(_ntl_gbigint a, long e, _ntl_gbigint *b);
/* *b = a^e; error raised if e < 0 */
void _ntl_gexps(long a, long e, _ntl_gbigint *b);
/* *b = a^e; error raised if e < 0 */
/*********************************************************************
Modular Arithmetic
Addition, subtraction, multiplication, squaring division, inversion,
and exponentiation modulo a positive modulus n, where all operands
(except for the exponent in exponentiation) and results are in the
range [0, n-1].
ALIAS RESTRICTION: output parameters should not alias n
***********************************************************************/
void _ntl_gaddmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a + b) % n */
void _ntl_gsubmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a - b) % n */
void _ntl_gsmulmod(_ntl_gbigint a, long b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a * b) % n */
void _ntl_gmulmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a * b) % n */
void _ntl_gsqmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (a ^ 2) % n */
void _ntl_ginvmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
/* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */
void _ntl_gpowermod(_ntl_gbigint g, _ntl_gbigint e, _ntl_gbigint F,
_ntl_gbigint *h);
/* *b = (a ^ e) % n; */
/**************************************************************************
Euclidean Algorithms
***************************************************************************/
void _ntl_ggcd(_ntl_gbigint m1, _ntl_gbigint m2, _ntl_gbigint *r);
/* *r = greatest common divisor of m1 and m2;
uses binary gcd algorithm */
void _ntl_gexteucl(_ntl_gbigint a, _ntl_gbigint *xa,
_ntl_gbigint b, _ntl_gbigint *xb,
_ntl_gbigint *d);
/*
*d = a * *xa + b * *xb = gcd(a, b);
sets *d, *xa and *xb given a and b;
uses Lehmer`s trick
*/
long _ntl_ginv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
/*
if (a and b coprime)
{
*c = inv;
return(0);
}
else
{
*c = gcd(a, b);
return(1);
}
where inv is such that (inv * a) == 1 mod b;
error raised if a < 0 or b <= 0
*/
long _ntl_gxxratrecon(_ntl_gbigint x, _ntl_gbigint m,
_ntl_gbigint a_bound, _ntl_gbigint b_bound,
_ntl_gbigint *a, _ntl_gbigint *b);
/* rational reconstruction: see doc in ZZ.txt */
/**********************************************************************
Storage Allocation
These routines use malloc and free.
***********************************************************************/
void _ntl_gsetlength(_ntl_gbigint *v, long len);
/* Allocates enough space to hold a len-digit number,
where each digit has NTL_NBITS bits.
If space must be allocated, space for one extra digit
is always allocated. */
void _ntl_gfree(_ntl_gbigint *x);
/* Free's space held by x, and sets x back to 0. */
/*******************************************************************
Special routines
********************************************************************/
long _ntl_gsize(_ntl_gbigint n);
long _ntl_gisone(_ntl_gbigint n);
long _ntl_gsptest(_ntl_gbigint a);
long _ntl_gwsptest(_ntl_gbigint a);
long _ntl_gcrtinrange(_ntl_gbigint g, _ntl_gbigint a);
void _ntl_gfrombytes(_ntl_gbigint *x, const unsigned char *p, long n);
void _ntl_gbytesfromz(unsigned char *p, _ntl_gbigint a, long nn);
long _ntl_gblock_construct_alloc(_ntl_gbigint *x, long d, long n);
void _ntl_gblock_construct_set(_ntl_gbigint x, _ntl_gbigint *y, long i);
long _ntl_gblock_destroy(_ntl_gbigint x);
long _ntl_gblock_storage(long d);
void _ntl_gcrt_struct_init(void **crt_struct, long n, _ntl_gbigint p,
const long *primes);
void _ntl_gcrt_struct_insert(void *crt_struct, long i, _ntl_gbigint m);
void _ntl_gcrt_struct_free(void *crt_struct);
void _ntl_gcrt_struct_eval(void *crt_struct, _ntl_gbigint *t, const long *a);
long _ntl_gcrt_struct_special(void *crt_struct);
void _ntl_grem_struct_init(void **rem_struct, long n, _ntl_gbigint p,
const long *primes);
void _ntl_grem_struct_free(void *rem_struct);
void _ntl_grem_struct_eval(void *rem_struct, long *x, _ntl_gbigint a);
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif
extern int _ntl_gmp_hack;
#define NTL_crt_struct_eval _ntl_gcrt_struct_eval
#define NTL_crt_struct_free _ntl_gcrt_struct_free
#define NTL_crt_struct_init _ntl_gcrt_struct_init
#define NTL_crt_struct_insert _ntl_gcrt_struct_insert
#define NTL_crt_struct_special _ntl_gcrt_struct_special
#define NTL_rem_struct_eval _ntl_grem_struct_eval
#define NTL_rem_struct_free _ntl_grem_struct_free
#define NTL_rem_struct_init _ntl_grem_struct_init
#define NTL_verylong _ntl_gbigint
#define NTL_z2log _ntl_g2log
#define NTL_zabs _ntl_gabs
#define NTL_zadd _ntl_gadd
#define NTL_zaddmod _ntl_gaddmod
#define NTL_zand _ntl_gand
#define NTL_zbit _ntl_gbit
#define NTL_zblock_construct_alloc _ntl_gblock_construct_alloc
#define NTL_zblock_construct_set _ntl_gblock_construct_set
#define NTL_zblock_destroy _ntl_gblock_destroy
#define NTL_zblock_storage _ntl_gblock_storage
#define NTL_zbytesfromz _ntl_gbytesfromz
#define NTL_zcompare _ntl_gcompare
#define NTL_zcopy _ntl_gcopy
#define NTL_zcrtinrange _ntl_gcrtinrange
#define NTL_zdiv _ntl_gdiv
#define NTL_zdoub _ntl_gdoub
#define NTL_zdoubtoz _ntl_gdoubtoz
#define NTL_zexp _ntl_gexp
#define NTL_zexps _ntl_gexps
#define NTL_zexteucl _ntl_gexteucl
#define NTL_zfree _ntl_gfree
#define NTL_zfrombytes _ntl_gfrombytes
#define NTL_zgcd _ntl_ggcd
#define NTL_zintoz _ntl_gintoz
#define NTL_zinv _ntl_ginv
#define NTL_zinvmod _ntl_ginvmod
#define NTL_zisone _ntl_gisone
#define NTL_ziszero _ntl_giszero
#define NTL_zlog _ntl_glog
#define NTL_zlowbits _ntl_glowbits
#define NTL_zlshift _ntl_glshift
#define NTL_zmakeodd _ntl_gmakeodd
#define NTL_zmod _ntl_gmod
#define NTL_zmul _ntl_gmul
#define NTL_zmulmod _ntl_gmulmod
#define NTL_znegate _ntl_gnegate
#define NTL_znumtwos _ntl_gnumtwos
#define NTL_zodd _ntl_godd
#define NTL_zone _ntl_gone
#define NTL_zor _ntl_gor
#define NTL_zpowermod _ntl_gpowermod
#define NTL_zquickmod _ntl_gquickmod
#define NTL_zround_correction _ntl_ground_correction
#define NTL_zrshift _ntl_grshift
#define NTL_zsadd _ntl_gsadd
#define NTL_zscompare _ntl_gscompare
#define NTL_zsdiv _ntl_gsdiv
#define NTL_zsetbit _ntl_gsetbit
#define NTL_zsetlength _ntl_gsetlength
#define NTL_zsign _ntl_gsign
#define NTL_zsize _ntl_gsize
#define NTL_zslowbits _ntl_gslowbits
#define NTL_zsmod _ntl_gsmod
#define NTL_zsmul _ntl_gsmul
#define NTL_zsmulmod _ntl_gsmulmod
#define NTL_zsptest _ntl_gsptest
#define NTL_zsq _ntl_gsq
#define NTL_zsqmod _ntl_gsqmod
#define NTL_zsqrt _ntl_gsqrt
#define NTL_zsqrts _ntl_gsqrts
#define NTL_zsub _ntl_gsub
#define NTL_zsubmod _ntl_gsubmod
#define NTL_zsubpos _ntl_gsubpos
#define NTL_zswap _ntl_gswap
#define NTL_zswitchbit _ntl_gswitchbit
#define NTL_ztoint _ntl_gtoint
#define NTL_ztouint _ntl_gtouint
#define NTL_zuintoz _ntl_guintoz
#define NTL_zweight _ntl_gweight
#define NTL_zweights _ntl_gweights
#define NTL_zwsptest _ntl_gwsptest
#define NTL_zxor _ntl_gxor
#define NTL_zxxratrecon _ntl_gxxratrecon
#define NTL_zzero _ntl_gzero
#define NTL_GMP_LIP
|