/usr/include/NTL/c_lip.h is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | typedef long * _ntl_verylong;
#if (defined(NTL_SINGLE_MUL))
#if (defined(NTL_AVOID_FLOAT) || defined(NTL_LONG_LONG))
#error "at most one of NTL_SINGLE_MUL NTL_AVOID_FLOAT NTL_LONG_LONG allowed"
#endif
#elif (defined(NTL_AVOID_FLOAT) && defined(NTL_LONG_LONG))
#error "at most one of NTL_SINGLE_MUL NTL_AVOID_FLOAT NTL_LONG_LONG allowed"
#endif
#if (defined(NTL_SINGLE_MUL))
#if (!NTL_SINGLE_MUL_OK)
#error "NTL_SINGLE_MUL not supported on this platform"
#endif
#if (defined(NTL_CLEAN_INT))
#error "NTL_SINGLE_MUL not allowed with NTL_CLEAN_INT"
#endif
#define NTL_NBITS (26)
#else
#define NTL_NBITS NTL_NBITS_MAX
#endif
#define NTL_RADIX (1L<<NTL_NBITS)
#define NTL_NBITSH (NTL_NBITS>>1)
#define NTL_RADIXM (NTL_RADIX-1)
#define NTL_RADIXROOT (1L<<NTL_NBITSH)
#define NTL_RADIXROOTM (NTL_RADIXROOT-1)
#define NTL_FRADIX ((double) NTL_RADIX)
#define NTL_FRADIX_INV (((double) 1.0)/((double) NTL_RADIX))
#define NTL_ZZ_NBITS NTL_NBITS
#define NTL_ZZ_FRADIX ((double) (1L << NTL_NBITS))
#define NTL_SP_NBITS NTL_NBITS
#define NTL_SP_BOUND (1L << NTL_SP_NBITS)
#define NTL_SP_FBOUND ((double) NTL_SP_BOUND)
#define NTL_WSP_NBITS NTL_ZZ_NBITS
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)
#if (defined(NTL_SINGLE_MUL) && !NTL_SINGLE_MUL_OK)
#undef NTL_SINGLE_MUL
#endif
#if (defined(NTL_SINGLE_MUL))
/****************************************************************
The following macros extract the two words of a double,
getting around the type system.
This is only used in the NTL_SINGLE_MUL strategy.
*****************************************************************/
#if (NTL_DOUBLES_LOW_HIGH)
#define NTL_LO_WD 0
#define NTL_HI_WD 1
#else
#define NTL_LO_WD 1
#define NTL_HI_WD 0
#endif
typedef union { double d; unsigned long rep[2]; } _ntl_d_or_rep;
#define NTL_FetchHiLo(hi,lo,x) \
do { \
_ntl_d_or_rep ll_xx; \
ll_xx.d = (x); \
hi = ll_xx.rep[NTL_HI_WD]; \
lo = ll_xx.rep[NTL_LO_WD]; \
} while (0)
#define NTL_FetchLo(lo,x) \
do { \
_ntl_d_or_rep ll_xx; \
ll_xx.d = x; \
lo = ll_xx.rep[NTL_LO_WD]; \
} while (0)
#endif
/**********************************************************************
A multiprecision integer is represented as a pointer to long.
Let x be such a pointer.
x = 0 represents 0.
Otherwise, let n = abs(x[0]) and s = sign(x[0]);
the integer represented is then:
s*(x[1] + x[2]*NTL_RADIX + ... + x[n]*NTL_RADIX^{n-1}),
where x[n] != 0, unless n = s = 1.
Notice that the number zero can be represented in precisely 2 ways,
either as a null pointer, or as x[0] = 1 and x[1] = 0.
Storage is generally managed via _ntl_zsetlength and _ntl_zfree.
x[-1] = (k << 1) | b, where k is the maximum value of n allocated,
and b is a bit that is set is the space is managed by some
mechanism other than _ntl_zsetlength and _ntl_zfree.
************************************************************************/
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
extern "C" {
#endif
/***********************************************************************
Basic Functions
***********************************************************************/
void _ntl_zsadd(_ntl_verylong a, long d, _ntl_verylong *b);
/* *b = a + d */
void _ntl_zadd(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* *c = a + b */
void _ntl_zsub(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* *c = a - b */
void _ntl_zsubpos(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* *c = a - b; assumes a >= b >= 0 */
void _ntl_zsmul(_ntl_verylong a, long d, _ntl_verylong *b);
/* *b = d * a */
void _ntl_zmul(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* *c = a * b */
void _ntl_zsq(_ntl_verylong a, _ntl_verylong *c);
/* *c = a * a */
long _ntl_zsdiv(_ntl_verylong a, long b, _ntl_verylong *q);
/* (*q) = floor(a/b) and a - floor(a/b)*(*q) is returned;
error is raised if b == 0;
if b does not divide a, then sign(*q) == sign(b) */
void _ntl_zdiv(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *q, _ntl_verylong *r);
/* (*q) = floor(a/b) and (*r) = a - floor(a/b)*(*q);
error is raised if b == 0;
if b does not divide a, then sign(*q) == sign(b) */
void _ntl_zmultirem(_ntl_verylong a, long n, long* dd, long* rr);
void _ntl_zmultirem2(_ntl_verylong a, long n, long* dd, double **tbl, long* rr);
/* rr[i] = a % dd[i], i = 0..n-1;
assumes a >= 0, 0 < dd[i] < NTL_RADIX
_ntl_zmultirem2 takes an extra argument, tbl, which contains
pre-computed residues of powers of RADIX */
void _ntl_zmultirem3(_ntl_verylong a, long n, long* dd, long **tbl, long* rr);
/* same as above, but tbl has different type */
long _ntl_zsfastrem(_ntl_verylong a, long d);
/* return a % d;
assumes a >= 0, 0 < d < NTL_RADIX */
void _ntl_zmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *r);
/* same as _ntl_zdiv, but only remainder is computed */
long _ntl_zsmod(_ntl_verylong a, long d);
/* same as _ntl_zsdiv, but only remainder is computed */
void _ntl_zquickmod(_ntl_verylong *r, _ntl_verylong b);
/* *r = *r % b;
assumes b > 0 and *r >= 0;
The division is performed in place (but may sometimes
cause *r to grow by one digit) */
/********************************************************************
Shifting and bit manipulation
*********************************************************************/
void _ntl_z2mul(_ntl_verylong n, _ntl_verylong *a);
/* *a = 2 * n */
long _ntl_z2div(_ntl_verylong n, _ntl_verylong *a);
/* *a = sign(n) * (|n|/2) */
void _ntl_zlshift(_ntl_verylong n, long k, _ntl_verylong *a);
/* *a = sign(n) * (|n| << k);
shift is in reverse direction for negative k */
void _ntl_zrshift(_ntl_verylong n, long k, _ntl_verylong *a);
/* *a = sign(n) * (|n| >> k);
shift is in reverse direction for negative k */
long _ntl_zmakeodd(_ntl_verylong *n);
/*
if (n != 0)
*n = m;
return (k such that n == 2 ^ k * m with m odd);
else
return (0);
*/
long _ntl_znumtwos(_ntl_verylong n);
/* return largest e such that 2^e divides n, or zero if n is zero */
long _ntl_zodd(_ntl_verylong a);
/* returns 1 if n is odd and 0 if it is even */
long _ntl_zbit(_ntl_verylong a, long p);
/* returns p-th bit of a, where the low order bit is indexed by 0;
p out of range returns 0 */
long _ntl_zsetbit(_ntl_verylong *a, long p);
/* returns original value of p-th bit of |a|, and replaces
p-th bit of a by 1 if it was zero;
error if p < 0 */
long _ntl_zswitchbit(_ntl_verylong *a, long p);
/* returns original value of p-th bit of |a|, and switches
the value of p-th bit of a;
p starts counting at 0;
error if p < 0 */
void _ntl_zlowbits(_ntl_verylong a, long k, _ntl_verylong *b);
/* places k low order bits of |a| in b */
long _ntl_zslowbits(_ntl_verylong a, long k);
/* returns k low order bits of |a| */
long _ntl_zweights(long a);
/* returns Hamming weight of |a| */
long _ntl_zweight(_ntl_verylong a);
/* returns Hamming weight of |a| */
void _ntl_zand(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* c gets bit pattern `bits of |a|` and `bits of |b|` */
void _ntl_zor(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* c gets bit pattern `bits of |a|` inclusive or `bits of |b|` */
void _ntl_zxor(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/* c gets bit pattern `bits of |a|` exclusive or `bits of |b|` */
/************************************************************************
Comparison
*************************************************************************/
long _ntl_zcompare(_ntl_verylong a, _ntl_verylong b);
/*
if (a > b)
return (1);
if (a == b)
return (0);
if (a < b)
return (-1);
*/
long _ntl_zscompare(_ntl_verylong a, long b);
/* single-precision version of the above */
long _ntl_ziszero (_ntl_verylong a);
/* test for 0 */
long _ntl_zsign(_ntl_verylong a);
/*
if (a > 0)
return (1);
if (a == 0)
return (0);
if (a < 0)
return (-1);
*/
void _ntl_zabs(_ntl_verylong *a);
/* *a = |a| */
void _ntl_znegate(_ntl_verylong *a);
/* *a = -a */
void _ntl_zcopy(_ntl_verylong a, _ntl_verylong *b);
/* *b = a; space is allocated */
void _ntl_zcopy1(_ntl_verylong a, _ntl_verylong *b);
/* *b = a; space not necessarily allocated */
void _ntl_zswap(_ntl_verylong *a, _ntl_verylong *b);
/* swap a and b (by swaping pointers) */
long _ntl_z2log(_ntl_verylong a);
/* number of bits in |a|; returns 0 if a = 0 */
long _ntl_z2logs(long a);
/* single-precision version of the above */
/********************************************************************
Conversion
*********************************************************************/
void _ntl_zzero(_ntl_verylong *a);
/* *a = 0; space is allocated */
void _ntl_zzero1(_ntl_verylong *a);
/* *a = 0; space not necessarily allocated */
void _ntl_zone(_ntl_verylong *a);
/* *a = 1 */
void _ntl_zintoz(long d, _ntl_verylong *a);
/* *a = d; space is allocated */
void _ntl_zintoz1(long d, _ntl_verylong *a);
/* *a = d; space not necessarily allocated */
void _ntl_zuintoz(unsigned long d, _ntl_verylong *a);
/* *a = d; space is allocated */
long _ntl_ztoint(_ntl_verylong a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
unsigned long _ntl_ztouint(_ntl_verylong a);
/* converts a to a long; overflow results in value
mod 2^{NTL_BITS_PER_LONG}. */
double _ntl_zdoub(_ntl_verylong n);
/* converts a to a double; no overflow check */
long _ntl_zround_correction(_ntl_verylong a, long k, long residual);
/* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
The result is what we should add to (a >> k) to round
x = a/2^k to the nearest integer using IEEE-like rounding rules
(i.e., round to nearest, and round to even to break ties).
The result is either 0 or sign(a).
If residual is not zero, it is as if x were replaced by
x' = x + residual*2^{-(k+1)}.
This can be used to break ties when x is exactly
half way between two integers. */
double _ntl_zlog(_ntl_verylong a);
/* computes log(a), protecting against overflow */
void _ntl_zdoubtoz(double a, _ntl_verylong *x);
/* x = floor(a); */
/************************************************************************
Square roots
*************************************************************************/
long _ntl_zsqrts(long n);
/* return floor(sqrt(n)); error raised in n < 0 */
void _ntl_zsqrt(_ntl_verylong n, _ntl_verylong *r);
/* *r = floor(sqrt(n)); error raised in n < 0 */
/*********************************************************************
Exponentiation
**********************************************************************/
void _ntl_zexp(_ntl_verylong a, long e, _ntl_verylong *b);
/* *b = a^e; error raised if e < 0 */
void _ntl_zexps(long a, long e, _ntl_verylong *b);
/* *b = a^e; error raised if e < 0 */
/*********************************************************************
Modular Arithmetic
Addition, subtraction, multiplication, squaring division, inversion,
and exponentiation modulo a positive modulus n, where all operands
(except for the exponent in exponentiation) and results are in the
range [0, n-1].
***********************************************************************/
void _ntl_zaddmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a + b) % n */
void _ntl_zsubmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a - b) % n */
void _ntl_zsmulmod(_ntl_verylong a, long b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a * b) % n */
void _ntl_zmulmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a * b) % n */
void _ntl_zsqmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
/* *c = (a ^ 2) % n */
void _ntl_zinvmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
/* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */
void _ntl_zpowermod(_ntl_verylong g, _ntl_verylong e, _ntl_verylong F,
_ntl_verylong *h);
/* *b = (a ^ e) % n; */
/**************************************************************************
Euclidean Algorithms
***************************************************************************/
void _ntl_zgcd(_ntl_verylong m1, _ntl_verylong m2, _ntl_verylong *r);
/* *r = greatest common divisor of m1 and m2;
uses binary gcd algorithm */
void _ntl_zexteucl(_ntl_verylong a, _ntl_verylong *xa,
_ntl_verylong b, _ntl_verylong *xb,
_ntl_verylong *d);
/*
*d = a * *xa + b * *xb = gcd(a, b);
sets *d, *xa and *xb given a and b;
uses Lehmer`s trick
*/
long _ntl_zinv(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
/*
if (a and b coprime)
{
*c = inv;
return(0);
}
else
{
*c = gcd(a, b);
return(1);
}
where inv is such that (inv * a) == 1 mod b;
error raised if b <= 1 or a < 0 or a >= b
*/
long _ntl_zxxratrecon(_ntl_verylong x, _ntl_verylong m,
_ntl_verylong a_bound, _ntl_verylong b_bound,
_ntl_verylong *a, _ntl_verylong *b);
/* rational reconstruction: see doc in ZZ.txt */
/**********************************************************************
Storage Allocation
These routines use malloc and free.
***********************************************************************/
void _ntl_zsetlength(_ntl_verylong *v, long len);
/* Allocates enough space to hold a len-digit number,
where each digit has NTL_NBITS bits.
If space must be allocated, space for one extra digit
is always allocated. */
void _ntl_zfree(_ntl_verylong *x);
/* Free's space held by x, and sets x back to 0. */
/*******************************************************************
Special routines
********************************************************************/
long _ntl_zsize(_ntl_verylong n);
long _ntl_zisone(_ntl_verylong n);
long _ntl_zdigit(_ntl_verylong a, long i);
long _ntl_zsptest(_ntl_verylong a);
long _ntl_zwsptest(_ntl_verylong a);
long _ntl_zcrtinrange(_ntl_verylong g, _ntl_verylong a);
void _ntl_zfrombytes(_ntl_verylong *x, const unsigned char *p, long n);
void _ntl_zbytesfromz(unsigned char *p, _ntl_verylong a, long nn);
long _ntl_zblock_construct_alloc(_ntl_verylong *x, long d, long n);
void _ntl_zblock_construct_set(_ntl_verylong x, _ntl_verylong *y, long i);
long _ntl_zblock_destroy(_ntl_verylong x);
long _ntl_zblock_storage(long d);
void _ntl_crt_struct_init(void **crt_struct, long n, _ntl_verylong p,
const long *primes);
void _ntl_crt_struct_insert(void *crt_struct, long i, _ntl_verylong m);
void _ntl_crt_struct_free(void *crt_struct);
void _ntl_crt_struct_eval(void *crt_struct, _ntl_verylong *t, const long *a);
long _ntl_crt_struct_special(void *crt_struct);
void _ntl_rem_struct_init(void **rem_struct, long n, _ntl_verylong p,
const long *primes);
void _ntl_rem_struct_free(void *rem_struct);
void _ntl_rem_struct_eval(void *rem_struct, long *x, _ntl_verylong a);
#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif
extern int _ntl_gmp_hack;
#define NTL_crt_struct_eval _ntl_crt_struct_eval
#define NTL_crt_struct_free _ntl_crt_struct_free
#define NTL_crt_struct_init _ntl_crt_struct_init
#define NTL_crt_struct_insert _ntl_crt_struct_insert
#define NTL_crt_struct_special _ntl_crt_struct_special
#define NTL_rem_struct_eval _ntl_rem_struct_eval
#define NTL_rem_struct_free _ntl_rem_struct_free
#define NTL_rem_struct_init _ntl_rem_struct_init
#define NTL_verylong _ntl_verylong
#define NTL_z2log _ntl_z2log
#define NTL_zabs _ntl_zabs
#define NTL_zadd _ntl_zadd
#define NTL_zaddmod _ntl_zaddmod
#define NTL_zand _ntl_zand
#define NTL_zbit _ntl_zbit
#define NTL_zblock_construct_alloc _ntl_zblock_construct_alloc
#define NTL_zblock_construct_set _ntl_zblock_construct_set
#define NTL_zblock_destroy _ntl_zblock_destroy
#define NTL_zblock_storage _ntl_zblock_storage
#define NTL_zbytesfromz _ntl_zbytesfromz
#define NTL_zcompare _ntl_zcompare
#define NTL_zcopy _ntl_zcopy1
#define NTL_zcrtinrange _ntl_zcrtinrange
#define NTL_zdigit _ntl_zdigit
#define NTL_zdiv _ntl_zdiv
#define NTL_zdoub _ntl_zdoub
#define NTL_zdoubtoz _ntl_zdoubtoz
#define NTL_zexp _ntl_zexp
#define NTL_zexps _ntl_zexps
#define NTL_zexteucl _ntl_zexteucl
#define NTL_zfree _ntl_zfree
#define NTL_zfrombytes _ntl_zfrombytes
#define NTL_zgcd _ntl_zgcd
#define NTL_zintoz _ntl_zintoz1
#define NTL_zinv _ntl_zinv
#define NTL_zinvmod _ntl_zinvmod
#define NTL_zisone _ntl_zisone
#define NTL_ziszero _ntl_ziszero
#define NTL_zlog _ntl_zlog
#define NTL_zlowbits _ntl_zlowbits
#define NTL_zlshift _ntl_zlshift
#define NTL_zmakeodd _ntl_zmakeodd
#define NTL_zmod _ntl_zmod
#define NTL_zmul _ntl_zmul
#define NTL_zmulmod _ntl_zmulmod
#define NTL_znegate _ntl_znegate
#define NTL_znumtwos _ntl_znumtwos
#define NTL_zodd _ntl_zodd
#define NTL_zone _ntl_zone
#define NTL_zor _ntl_zor
#define NTL_zpowermod _ntl_zpowermod
#define NTL_zquickmod _ntl_zquickmod
#define NTL_zround_correction _ntl_zround_correction
#define NTL_zrshift _ntl_zrshift
#define NTL_zsadd _ntl_zsadd
#define NTL_zscompare _ntl_zscompare
#define NTL_zsdiv _ntl_zsdiv
#define NTL_zsetbit _ntl_zsetbit
#define NTL_zsetlength _ntl_zsetlength
#define NTL_zsign _ntl_zsign
#define NTL_zsize _ntl_zsize
#define NTL_zslowbits _ntl_zslowbits
#define NTL_zsmod _ntl_zsmod
#define NTL_zsmul _ntl_zsmul
#define NTL_zsmulmod _ntl_zsmulmod
#define NTL_zsptest _ntl_zsptest
#define NTL_zsq _ntl_zsq
#define NTL_zsqmod _ntl_zsqmod
#define NTL_zsqrt _ntl_zsqrt
#define NTL_zsqrts _ntl_zsqrts
#define NTL_zsub _ntl_zsub
#define NTL_zsubmod _ntl_zsubmod
#define NTL_zsubpos _ntl_zsubpos
#define NTL_zswap _ntl_zswap
#define NTL_zswitchbit _ntl_zswitchbit
#define NTL_ztoint _ntl_ztoint
#define NTL_ztouint _ntl_ztouint
#define NTL_zuintoz _ntl_zuintoz
#define NTL_zweight _ntl_zweight
#define NTL_zweights _ntl_zweights
#define NTL_zwsptest _ntl_zwsptest
#define NTL_zxor _ntl_zxor
#define NTL_zxxratrecon _ntl_zxxratrecon
#define NTL_zzero _ntl_zzero1
|