This file is indexed.

/usr/include/NTL/c_lip.h is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
typedef long * _ntl_verylong;

#if (defined(NTL_SINGLE_MUL))

#if (defined(NTL_AVOID_FLOAT) || defined(NTL_LONG_LONG))
#error "at most one of NTL_SINGLE_MUL NTL_AVOID_FLOAT NTL_LONG_LONG allowed"
#endif

#elif (defined(NTL_AVOID_FLOAT) && defined(NTL_LONG_LONG))
#error "at most one of NTL_SINGLE_MUL NTL_AVOID_FLOAT NTL_LONG_LONG allowed"
#endif

#if (defined(NTL_SINGLE_MUL))

#if (!NTL_SINGLE_MUL_OK)
#error "NTL_SINGLE_MUL not supported on this platform"
#endif

#if (defined(NTL_CLEAN_INT))
#error "NTL_SINGLE_MUL not allowed with NTL_CLEAN_INT"
#endif


#define NTL_NBITS (26)

#else

#define NTL_NBITS NTL_NBITS_MAX

#endif


#define NTL_RADIX           (1L<<NTL_NBITS)
#define NTL_NBITSH          (NTL_NBITS>>1)
#define NTL_RADIXM          (NTL_RADIX-1)
#define NTL_RADIXROOT       (1L<<NTL_NBITSH)
#define NTL_RADIXROOTM      (NTL_RADIXROOT-1)

#define NTL_FRADIX ((double) NTL_RADIX)
#define NTL_FRADIX_INV  (((double) 1.0)/((double) NTL_RADIX))



#define NTL_ZZ_NBITS NTL_NBITS
#define NTL_ZZ_FRADIX ((double) (1L << NTL_NBITS))

#define NTL_SP_NBITS NTL_NBITS
#define NTL_SP_BOUND (1L << NTL_SP_NBITS)
#define NTL_SP_FBOUND ((double) NTL_SP_BOUND)

#define NTL_WSP_NBITS NTL_ZZ_NBITS
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)



#if (defined(NTL_SINGLE_MUL) && !NTL_SINGLE_MUL_OK)
#undef NTL_SINGLE_MUL
#endif

#if (defined(NTL_SINGLE_MUL))


/****************************************************************

The following macros extract the two words of a double,
getting around the type system.
This is only used in the NTL_SINGLE_MUL strategy.

*****************************************************************/

#if (NTL_DOUBLES_LOW_HIGH)
#define NTL_LO_WD 0
#define NTL_HI_WD 1
#else
#define NTL_LO_WD 1
#define NTL_HI_WD 0
#endif


typedef union { double d; unsigned long rep[2]; } _ntl_d_or_rep;

#define NTL_FetchHiLo(hi,lo,x) \
do { \
   _ntl_d_or_rep ll_xx; \
   ll_xx.d = (x); \
   hi = ll_xx.rep[NTL_HI_WD]; \
   lo = ll_xx.rep[NTL_LO_WD]; \
} while (0)


#define NTL_FetchLo(lo,x)  \
do {  \
   _ntl_d_or_rep ll_xx;  \
   ll_xx.d = x;  \
   lo = ll_xx.rep[NTL_LO_WD];  \
} while (0) 

#endif


/**********************************************************************

   A multiprecision integer is represented as a pointer to long.
   Let x be such a pointer.
   x = 0 represents 0.
   Otherwise, let n = abs(x[0]) and s = sign(x[0]);
   the integer represented is then:

      s*(x[1] + x[2]*NTL_RADIX + ... + x[n]*NTL_RADIX^{n-1}),

   where x[n] != 0, unless n = s = 1.
   Notice that the number zero can be represented in precisely 2 ways,
   either as a null pointer, or as x[0] = 1 and x[1] = 0.

   Storage is generally managed via _ntl_zsetlength and _ntl_zfree.
   x[-1] = (k << 1) | b, where k is the maximum value of n allocated,
   and b is a bit that is set is the space is managed by some
   mechanism other than _ntl_zsetlength and _ntl_zfree.

************************************************************************/



#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
extern "C" {
#endif


/***********************************************************************

   Basic Functions

***********************************************************************/
    


    void _ntl_zsadd(_ntl_verylong a, long d, _ntl_verylong *b);
       /* *b = a + d */

    void _ntl_zadd(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
       /*  *c = a + b */

    void _ntl_zsub(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
       /* *c = a - b */

    void _ntl_zsubpos(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
       /* *c = a - b; assumes a >= b >= 0 */

    void _ntl_zsmul(_ntl_verylong a, long d, _ntl_verylong *b);
       /* *b = d * a */

    void _ntl_zmul(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
       /* *c = a * b */

    void _ntl_zsq(_ntl_verylong a, _ntl_verylong *c);
       /* *c = a * a */

    long _ntl_zsdiv(_ntl_verylong a, long b, _ntl_verylong *q);
       /* (*q) = floor(a/b) and a - floor(a/b)*(*q) is returned;
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_zdiv(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *q, _ntl_verylong *r);
       /* (*q) = floor(a/b) and (*r) = a - floor(a/b)*(*q);
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_zmultirem(_ntl_verylong a, long n, long* dd, long* rr);
    void _ntl_zmultirem2(_ntl_verylong a, long n, long* dd, double **tbl, long* rr);
       /* rr[i] = a % dd[i], i = 0..n-1;
          assumes a >= 0, 0 < dd[i] < NTL_RADIX
          _ntl_zmultirem2 takes an extra argument, tbl, which contains
          pre-computed residues of powers of RADIX */
    void _ntl_zmultirem3(_ntl_verylong a, long n, long* dd, long **tbl, long* rr);
       /* same as above, but tbl has different type */

    long _ntl_zsfastrem(_ntl_verylong a, long d);
       /* return a % d;
          assumes a >= 0, 0 < d < NTL_RADIX */
        

    void _ntl_zmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *r);
       /* same as _ntl_zdiv, but only remainder is computed */

    long _ntl_zsmod(_ntl_verylong a, long d);
       /* same as _ntl_zsdiv, but only remainder is computed */

    void _ntl_zquickmod(_ntl_verylong *r, _ntl_verylong b);
       /* *r = *r % b;
	  assumes b > 0 and *r >= 0;
	  The division is performed in place (but may sometimes
          cause *r to grow by one digit) */

/********************************************************************

   Shifting and bit manipulation

*********************************************************************/

    void _ntl_z2mul(_ntl_verylong n, _ntl_verylong *a);
       /* *a = 2 * n */

    long _ntl_z2div(_ntl_verylong n, _ntl_verylong *a);
       /* *a = sign(n) * (|n|/2) */ 

    void _ntl_zlshift(_ntl_verylong n, long k, _ntl_verylong *a);
       /* *a = sign(n) * (|n| << k);
          shift is in reverse direction for negative k */

    void _ntl_zrshift(_ntl_verylong n, long k, _ntl_verylong *a);
       /* *a = sign(n) * (|n| >> k);
          shift is in reverse direction for negative k */
    
    long _ntl_zmakeodd(_ntl_verylong *n);
       /*
          if (n != 0)
              *n = m;
              return (k such that n == 2 ^ k * m with m odd);
          else
              return (0); 
        */

    long _ntl_znumtwos(_ntl_verylong n);
        /* return largest e such that 2^e divides n, or zero if n is zero */



    long _ntl_zodd(_ntl_verylong a);
       /* returns 1 if n is odd and 0 if it is even */

    long _ntl_zbit(_ntl_verylong a, long p);
       /* returns p-th bit of a, where the low order bit is indexed by 0;
          p out of range returns 0 */

    long _ntl_zsetbit(_ntl_verylong *a, long p);
       /* returns original value of p-th bit of |a|, and replaces
          p-th bit of a by 1 if it was zero;
          error if p < 0 */

    long _ntl_zswitchbit(_ntl_verylong *a, long p);
       /* returns original value of p-th bit of |a|, and switches
          the value of p-th bit of a;
          p starts counting at 0;
          error if p < 0 */


     void _ntl_zlowbits(_ntl_verylong a, long k, _ntl_verylong *b);
        /* places k low order bits of |a| in b */ 

     long _ntl_zslowbits(_ntl_verylong a, long k);
        /* returns k low order bits of |a| */

    long _ntl_zweights(long a);
        /* returns Hamming weight of |a| */

    long _ntl_zweight(_ntl_verylong a);
        /* returns Hamming weight of |a| */

    void _ntl_zand(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
        /* c gets bit pattern `bits of |a|` and `bits of |b|` */

    void _ntl_zor(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
        /* c gets bit pattern `bits of |a|` inclusive or `bits of |b|` */

    void _ntl_zxor(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
        /* c gets bit pattern `bits of |a|` exclusive or `bits of |b|` */




/************************************************************************

   Comparison

*************************************************************************/

    long _ntl_zcompare(_ntl_verylong a, _ntl_verylong b);
       /*
          if (a > b)
              return (1);
          if (a == b)
              return (0);
          if (a < b)
              return (-1);
         */

    long _ntl_zscompare(_ntl_verylong a, long b);
       /* single-precision version of the above */

    long _ntl_ziszero (_ntl_verylong a);
       /* test for 0 */


    long _ntl_zsign(_ntl_verylong a);
       /* 
          if (a > 0)
              return (1);
          if (a == 0)
              return (0);
          if (a < 0)
              return (-1);
        */

    void _ntl_zabs(_ntl_verylong *a);
       /* *a = |a| */

    void _ntl_znegate(_ntl_verylong *a);
       /* *a = -a */

    void _ntl_zcopy(_ntl_verylong a, _ntl_verylong *b);
       /* *b = a;  space is allocated  */

    void _ntl_zcopy1(_ntl_verylong a, _ntl_verylong *b);
       /* *b = a;  space not necessarily allocated  */

    void _ntl_zswap(_ntl_verylong *a, _ntl_verylong *b);
       /* swap a and b (by swaping pointers) */

    long _ntl_z2log(_ntl_verylong a);
       /* number of bits in |a|; returns 0 if a = 0 */

    long _ntl_z2logs(long a);
        /* single-precision version of the above */


/********************************************************************

   Conversion

*********************************************************************/
        
    void _ntl_zzero(_ntl_verylong *a);
       /* *a = 0;  space is allocated */

    void _ntl_zzero1(_ntl_verylong *a);
       /* *a = 0;  space not necessarily allocated */

    void _ntl_zone(_ntl_verylong *a);
       /* *a = 1 */

    void _ntl_zintoz(long d, _ntl_verylong *a);
       /* *a = d;  space is allocated  */

    void _ntl_zintoz1(long d, _ntl_verylong *a);
       /* *a = d;  space not necessarily allocated  */

    void _ntl_zuintoz(unsigned long d, _ntl_verylong *a);
       /* *a = d;  space is allocated  */

    long _ntl_ztoint(_ntl_verylong a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */

    unsigned long _ntl_ztouint(_ntl_verylong a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */


    double _ntl_zdoub(_ntl_verylong n);
       /* converts a to a double;  no overflow check */

    long _ntl_zround_correction(_ntl_verylong a, long k, long residual);
       /* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
          The result is what we should add to (a >> k) to round
          x = a/2^k to the nearest integer using IEEE-like rounding rules
          (i.e., round to nearest, and round to even to break ties).
          The result is either 0 or sign(a).
          If residual is not zero, it is as if x were replaced by
          x' = x + residual*2^{-(k+1)}.
          This can be used to break ties when x is exactly
          half way between two integers. */

    double _ntl_zlog(_ntl_verylong a);
       /* computes log(a), protecting against overflow */
      

    void _ntl_zdoubtoz(double a, _ntl_verylong *x);
       /* x = floor(a); */  
    



/************************************************************************

   Square roots

*************************************************************************/


    long _ntl_zsqrts(long n);
       /* return floor(sqrt(n));  error raised in n < 0 */

    void _ntl_zsqrt(_ntl_verylong n, _ntl_verylong *r);
       /* *r =  floor(sqrt(n));  error raised in n < 0 */

/*********************************************************************
 
    Exponentiation
 
**********************************************************************/

   void _ntl_zexp(_ntl_verylong a, long e, _ntl_verylong *b);
       /* *b = a^e;  error raised if e < 0 */

   void _ntl_zexps(long a, long e, _ntl_verylong *b);
       /* *b = a^e;  error raised if e < 0 */
       

/*********************************************************************

   Modular Arithmetic

   Addition, subtraction, multiplication, squaring division, inversion,
   and exponentiation modulo a positive modulus n, where all operands
   (except for the exponent in exponentiation) and results are in the
   range [0, n-1].   

***********************************************************************/

    void _ntl_zaddmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (a + b) % n */

    void _ntl_zsubmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (a - b) % n */

    void _ntl_zsmulmod(_ntl_verylong a, long b, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (a * b) % n */

    void _ntl_zmulmod(_ntl_verylong a, _ntl_verylong b, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (a * b) % n */

    void _ntl_zsqmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (a ^ 2) % n */

    void _ntl_zinvmod(_ntl_verylong a, _ntl_verylong n, _ntl_verylong *c);
       /* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */

    void _ntl_zpowermod(_ntl_verylong g, _ntl_verylong e, _ntl_verylong F,
                        _ntl_verylong *h);

       /* *b = (a ^ e) % n;  */



/**************************************************************************

   Euclidean Algorithms

***************************************************************************/
    void _ntl_zgcd(_ntl_verylong m1, _ntl_verylong m2, _ntl_verylong *r);
       /* *r = greatest common divisor of m1 and m2; 
          uses binary gcd algorithm */


    void _ntl_zexteucl(_ntl_verylong a, _ntl_verylong *xa,
                 _ntl_verylong b, _ntl_verylong *xb,
                 _ntl_verylong *d);
       /*
          *d = a * *xa + b * *xb = gcd(a, b);
          sets *d, *xa and *xb given a and b;
          uses Lehmer`s trick
        */


    long _ntl_zinv(_ntl_verylong a, _ntl_verylong b, _ntl_verylong *c);
       /*
          if (a and b coprime)
          {
              *c = inv; 
              return(0);
          }
          else
          {
              *c = gcd(a, b);
              return(1);
          }
          
          where inv is such that (inv * a)  == 1 mod b;
          error raised if b <= 1 or a < 0 or a >= b
        */

     long _ntl_zxxratrecon(_ntl_verylong x, _ntl_verylong m,  
                      _ntl_verylong a_bound, _ntl_verylong b_bound,
                      _ntl_verylong *a, _ntl_verylong *b);

        /* rational reconstruction: see doc in ZZ.txt */


        
/**********************************************************************

    Storage Allocation

    These routines use malloc and free.

***********************************************************************/


    void _ntl_zsetlength(_ntl_verylong *v, long len);
       /* Allocates enough space to hold a len-digit number,
          where each digit has NTL_NBITS bits.
          If space must be allocated, space for one extra digit
          is always allocated. */

    void _ntl_zfree(_ntl_verylong *x);
       /* Free's space held by x, and sets x back to 0. */


/*******************************************************************

    Special routines

********************************************************************/



long _ntl_zsize(_ntl_verylong n);
long _ntl_zisone(_ntl_verylong n);
long _ntl_zdigit(_ntl_verylong a, long i);

long _ntl_zsptest(_ntl_verylong a);
long _ntl_zwsptest(_ntl_verylong a);

long _ntl_zcrtinrange(_ntl_verylong g, _ntl_verylong a);

void _ntl_zfrombytes(_ntl_verylong *x, const unsigned char *p, long n);
void _ntl_zbytesfromz(unsigned char *p, _ntl_verylong a, long nn);

long _ntl_zblock_construct_alloc(_ntl_verylong *x, long d, long n);
void _ntl_zblock_construct_set(_ntl_verylong x, _ntl_verylong *y, long i);
long _ntl_zblock_destroy(_ntl_verylong x);
long _ntl_zblock_storage(long d);



void _ntl_crt_struct_init(void **crt_struct, long n, _ntl_verylong p,
                          const long *primes);
void _ntl_crt_struct_insert(void *crt_struct, long i, _ntl_verylong m);
void _ntl_crt_struct_free(void *crt_struct);
void _ntl_crt_struct_eval(void *crt_struct, _ntl_verylong *t, const long *a);
long _ntl_crt_struct_special(void *crt_struct);

void _ntl_rem_struct_init(void **rem_struct, long n, _ntl_verylong p, 
                          const long *primes);
void _ntl_rem_struct_free(void *rem_struct);
void _ntl_rem_struct_eval(void *rem_struct, long *x, _ntl_verylong a);



#if (defined(__cplusplus) && !defined(NTL_CXX_ONLY))
}
#endif


extern int _ntl_gmp_hack;

#define NTL_crt_struct_eval _ntl_crt_struct_eval
#define NTL_crt_struct_free _ntl_crt_struct_free
#define NTL_crt_struct_init _ntl_crt_struct_init
#define NTL_crt_struct_insert _ntl_crt_struct_insert
#define NTL_crt_struct_special _ntl_crt_struct_special
#define NTL_rem_struct_eval _ntl_rem_struct_eval
#define NTL_rem_struct_free _ntl_rem_struct_free
#define NTL_rem_struct_init _ntl_rem_struct_init
#define NTL_verylong _ntl_verylong
#define NTL_z2log _ntl_z2log
#define NTL_zabs _ntl_zabs
#define NTL_zadd _ntl_zadd
#define NTL_zaddmod _ntl_zaddmod
#define NTL_zand _ntl_zand
#define NTL_zbit _ntl_zbit
#define NTL_zblock_construct_alloc _ntl_zblock_construct_alloc
#define NTL_zblock_construct_set _ntl_zblock_construct_set
#define NTL_zblock_destroy _ntl_zblock_destroy
#define NTL_zblock_storage _ntl_zblock_storage
#define NTL_zbytesfromz _ntl_zbytesfromz
#define NTL_zcompare _ntl_zcompare
#define NTL_zcopy _ntl_zcopy1
#define NTL_zcrtinrange _ntl_zcrtinrange
#define NTL_zdigit _ntl_zdigit
#define NTL_zdiv _ntl_zdiv
#define NTL_zdoub _ntl_zdoub
#define NTL_zdoubtoz _ntl_zdoubtoz
#define NTL_zexp _ntl_zexp
#define NTL_zexps _ntl_zexps
#define NTL_zexteucl _ntl_zexteucl
#define NTL_zfree _ntl_zfree
#define NTL_zfrombytes _ntl_zfrombytes
#define NTL_zgcd _ntl_zgcd
#define NTL_zintoz _ntl_zintoz1
#define NTL_zinv _ntl_zinv
#define NTL_zinvmod _ntl_zinvmod
#define NTL_zisone _ntl_zisone
#define NTL_ziszero _ntl_ziszero
#define NTL_zlog _ntl_zlog
#define NTL_zlowbits _ntl_zlowbits
#define NTL_zlshift _ntl_zlshift
#define NTL_zmakeodd _ntl_zmakeodd
#define NTL_zmod _ntl_zmod
#define NTL_zmul _ntl_zmul
#define NTL_zmulmod _ntl_zmulmod
#define NTL_znegate _ntl_znegate
#define NTL_znumtwos _ntl_znumtwos
#define NTL_zodd _ntl_zodd
#define NTL_zone _ntl_zone
#define NTL_zor _ntl_zor
#define NTL_zpowermod _ntl_zpowermod
#define NTL_zquickmod _ntl_zquickmod
#define NTL_zround_correction _ntl_zround_correction
#define NTL_zrshift _ntl_zrshift
#define NTL_zsadd _ntl_zsadd
#define NTL_zscompare _ntl_zscompare
#define NTL_zsdiv _ntl_zsdiv
#define NTL_zsetbit _ntl_zsetbit
#define NTL_zsetlength _ntl_zsetlength
#define NTL_zsign _ntl_zsign
#define NTL_zsize _ntl_zsize
#define NTL_zslowbits _ntl_zslowbits
#define NTL_zsmod _ntl_zsmod
#define NTL_zsmul _ntl_zsmul
#define NTL_zsmulmod _ntl_zsmulmod
#define NTL_zsptest _ntl_zsptest
#define NTL_zsq _ntl_zsq
#define NTL_zsqmod _ntl_zsqmod
#define NTL_zsqrt _ntl_zsqrt
#define NTL_zsqrts _ntl_zsqrts
#define NTL_zsub _ntl_zsub
#define NTL_zsubmod _ntl_zsubmod
#define NTL_zsubpos _ntl_zsubpos
#define NTL_zswap _ntl_zswap
#define NTL_zswitchbit _ntl_zswitchbit
#define NTL_ztoint _ntl_ztoint
#define NTL_ztouint _ntl_ztouint
#define NTL_zuintoz _ntl_zuintoz
#define NTL_zweight _ntl_zweight
#define NTL_zweights _ntl_zweights
#define NTL_zwsptest _ntl_zwsptest
#define NTL_zxor _ntl_zxor
#define NTL_zxxratrecon _ntl_zxxratrecon
#define NTL_zzero _ntl_zzero1