/usr/include/NTL/ZZ_pEXFactoring.h is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | #ifndef NTL_ZZ_pEXFactoring__H
#define NTL_ZZ_pEXFactoring__H
#include <NTL/pair_ZZ_pEX_long.h>
NTL_OPEN_NNS
void SquareFreeDecomp(vec_pair_ZZ_pEX_long& u, const ZZ_pEX& f);
inline vec_pair_ZZ_pEX_long SquareFreeDecomp(const ZZ_pEX& f)
{ vec_pair_ZZ_pEX_long x; SquareFreeDecomp(x, f); return x; }
// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms
// (i.e., g_i = 1) deleted.
void FindRoots(vec_ZZ_pE& x, const ZZ_pEX& f);
inline vec_ZZ_pE FindRoots(const ZZ_pEX& f)
{ vec_ZZ_pE x; FindRoots(x, f); return x; }
// f is monic, and has deg(f) distinct roots.
// returns the list of roots
void FindRoot(ZZ_pE& root, const ZZ_pEX& f);
inline ZZ_pE FindRoot(const ZZ_pEX& f)
{ ZZ_pE x; FindRoot(x, f); return x; }
// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors
extern long ZZ_pEX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF
extern char ZZ_pEX_stem[];
// Determines filename stem for external storage in NewDDF.
extern double ZZ_pEXFileThresh; /* 128 */
// external files are used for baby/giant steps if size
// of these tables exceeds ZZ_pEXFileThresh KB.
void NewDDF(vec_pair_ZZ_pEX_long& factors,
const ZZ_pEX& f, const ZZ_pEX& h, long verbose=0);
inline vec_pair_ZZ_pEX_long NewDDF(const ZZ_pEX& f, const ZZ_pEX& h,
long verbose=0)
{ vec_pair_ZZ_pEX_long x; NewDDF(x, f, h, verbose); return x; }
void EDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, const ZZ_pEX& b,
long d, long verbose=0);
inline vec_ZZ_pEX EDF(const ZZ_pEX& f, const ZZ_pEX& b,
long d, long verbose=0)
{ vec_ZZ_pEX x; EDF(x, f, b, d, verbose); return x; }
// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.
void RootEDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);
inline vec_ZZ_pEX RootEDF(const ZZ_pEX& f, long verbose=0)
{ vec_ZZ_pEX x; RootEDF(x, f, verbose); return x; }
// EDF for d==1
void SFCanZass(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);
inline vec_ZZ_pEX SFCanZass(const ZZ_pEX& f, long verbose=0)
{ vec_ZZ_pEX x; SFCanZass(x, f, verbose); return x; }
// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.
void CanZass(vec_pair_ZZ_pEX_long& factors, const ZZ_pEX& f,
long verbose=0);
inline vec_pair_ZZ_pEX_long CanZass(const ZZ_pEX& f, long verbose=0)
{ vec_pair_ZZ_pEX_long x; CanZass(x, f, verbose); return x; }
// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.
void mul(ZZ_pEX& f, const vec_pair_ZZ_pEX_long& v);
inline ZZ_pEX mul(const vec_pair_ZZ_pEX_long& v)
{ ZZ_pEX x; mul(x, v); return x; }
// multiplies polynomials, with multiplicities
/*************************************************************
irreducible poly's: tests and constructions
**************************************************************/
long ProbIrredTest(const ZZ_pEX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.
long DetIrredTest(const ZZ_pEX& f);
// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).
long IterIrredTest(const ZZ_pEX& f);
// performs an iterative deterministic irreducibility test,
// based on DDF. Fast on average (when f has a small factor).
void BuildIrred(ZZ_pEX& f, long n);
inline ZZ_pEX BuildIrred_ZZ_pEX(long n)
{ ZZ_pEX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pEX, x); }
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(ZZ_pEX& f, const ZZ_pEX& g);
inline ZZ_pEX BuildRandomIrred(const ZZ_pEX& g)
{ ZZ_pEX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pEX, x); }
// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.
long RecComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);
// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves
long IterComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);
void TraceMap(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F,
const ZZ_pEX& b);
inline ZZ_pEX TraceMap(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F,
const ZZ_pEX& b)
{ ZZ_pEX x; TraceMap(x, a, d, F, b); return x; }
// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)
void PowerCompose(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F);
inline ZZ_pEX PowerCompose(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F)
{ ZZ_pEX x; PowerCompose(x, a, d, F); return x; }
// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)
NTL_CLOSE_NNS
#endif
|