This file is indexed.

/usr/include/NTL/ZZ_pEXFactoring.h is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#ifndef NTL_ZZ_pEXFactoring__H
#define NTL_ZZ_pEXFactoring__H

#include <NTL/pair_ZZ_pEX_long.h>

NTL_OPEN_NNS


void SquareFreeDecomp(vec_pair_ZZ_pEX_long& u, const ZZ_pEX& f);
inline vec_pair_ZZ_pEX_long SquareFreeDecomp(const ZZ_pEX& f)
   { vec_pair_ZZ_pEX_long x; SquareFreeDecomp(x, f); return x; }


// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms 
// (i.e., g_i = 1) deleted.


void FindRoots(vec_ZZ_pE& x, const ZZ_pEX& f);
inline vec_ZZ_pE FindRoots(const ZZ_pEX& f)
   { vec_ZZ_pE x; FindRoots(x, f); return x; }

// f is monic, and has deg(f) distinct roots.
// returns the list of roots


void FindRoot(ZZ_pE& root, const ZZ_pEX& f);
inline ZZ_pE FindRoot(const ZZ_pEX& f)
   { ZZ_pE x; FindRoot(x, f); return x; }


// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors


extern long ZZ_pEX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF

extern char ZZ_pEX_stem[]; 
// Determines filename stem for external storage in NewDDF.

extern double ZZ_pEXFileThresh; /* 128 */
// external files are used for baby/giant steps if size
// of these tables exceeds ZZ_pEXFileThresh KB.



void NewDDF(vec_pair_ZZ_pEX_long& factors, 
            const ZZ_pEX& f, const ZZ_pEX& h, long verbose=0);
inline vec_pair_ZZ_pEX_long NewDDF(const ZZ_pEX& f, const ZZ_pEX& h,
         long verbose=0)
   { vec_pair_ZZ_pEX_long x; NewDDF(x, f, h, verbose); return x; }





void EDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, const ZZ_pEX& b,
         long d, long verbose=0);
inline vec_ZZ_pEX EDF(const ZZ_pEX& f, const ZZ_pEX& b,
         long d, long verbose=0)
   { vec_ZZ_pEX x; EDF(x, f, b, d, verbose); return x; }


// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.



void RootEDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);
inline vec_ZZ_pEX RootEDF(const ZZ_pEX& f, long verbose=0)
   { vec_ZZ_pEX x; RootEDF(x, f, verbose); return x; }


// EDF for d==1

void SFCanZass(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);
inline vec_ZZ_pEX SFCanZass(const ZZ_pEX& f, long verbose=0)
   { vec_ZZ_pEX x; SFCanZass(x, f, verbose); return x; }


// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.



void CanZass(vec_pair_ZZ_pEX_long& factors, const ZZ_pEX& f, 
             long verbose=0);
inline vec_pair_ZZ_pEX_long CanZass(const ZZ_pEX& f, long verbose=0)
   { vec_pair_ZZ_pEX_long x; CanZass(x, f, verbose); return x; }


// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.


void mul(ZZ_pEX& f, const vec_pair_ZZ_pEX_long& v);
inline ZZ_pEX mul(const vec_pair_ZZ_pEX_long& v)
   { ZZ_pEX x; mul(x, v); return x; }


// multiplies polynomials, with multiplicities


/*************************************************************

            irreducible poly's:  tests and constructions

**************************************************************/

long ProbIrredTest(const ZZ_pEX& f, long iter=1);

// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.

long DetIrredTest(const ZZ_pEX& f);

// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).

long IterIrredTest(const ZZ_pEX& f);

// performs an iterative deterministic irreducibility test,
// based on DDF.  Fast on average (when f has a small factor).

void BuildIrred(ZZ_pEX& f, long n);
inline ZZ_pEX BuildIrred_ZZ_pEX(long n)
   { ZZ_pEX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pEX, x); }


// Build a monic irreducible poly of degree n.

void BuildRandomIrred(ZZ_pEX& f, const ZZ_pEX& g);
inline ZZ_pEX BuildRandomIrred(const ZZ_pEX& g)
    { ZZ_pEX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pEX, x); }


// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.


long RecComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);

// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves


long IterComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);


void TraceMap(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F,
              const ZZ_pEX& b);

inline ZZ_pEX TraceMap(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F,
              const ZZ_pEX& b)
   { ZZ_pEX x; TraceMap(x, a, d, F, b); return x; }


// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)



void PowerCompose(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F);

inline ZZ_pEX PowerCompose(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F)
   { ZZ_pEX x; PowerCompose(x, a, d, F); return x; }


// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)





NTL_CLOSE_NNS

#endif