This file is indexed.

/usr/include/ns3/nstime.h is in libns3-dev 3.13+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2005,2006 INRIA
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
 */
#ifndef TIME_H
#define TIME_H

#include "assert.h"
#include "attribute.h"
#include "attribute-helper.h"
#include "int64x64.h"
#include <stdint.h>
#include <math.h>
#include <ostream>

namespace ns3 {

/**
 * \ingroup core
 * \defgroup time Time
 */
/**
 * \ingroup time
 * \brief keep track of time unit.
 *
 * This template class is used to keep track of the value
 * of a specific time unit: the type TimeUnit<1> is used to
 * keep track of seconds, the type TimeUnit<2> is used to keep
 * track of seconds squared, the type TimeUnit<-1> is used to
 * keep track of 1/seconds, etc.
 *
 * This base class defines all the functionality shared by all
 * these time unit objects: it defines all the classic arithmetic
 * operators +, -, *, /, and all the classic comparison operators:
 * ==, !=, <, >, <=, >=. It is thus easy to add, substract, or
 * multiply multiple TimeUnit objects. The return type of any such
 * arithmetic expression is always a TimeUnit object.
 *
 * The ns3::uint64_t, ns3::Time, ns3::TimeSquare, and ns3::TimeInvert classes
 * are aliases for the TimeUnit<0>, TimeUnit<1>, TimeUnit<2> and TimeUnit<-1>
 * types respectively.
 *
 * For example:
 * \code
 * Time<1> t1 = Seconds (10.0);
 * Time<1> t2 = Seconds (10.0);
 * Time<2> t3 = t1 * t2;
 * Time<0> t4 = t1 / t2;
 * Time<3> t5 = t3 * t1;
 * Time<-2> t6 = t1 / t5;
 * TimeSquare t7 = t3;
 * uint64_t s = t4;
 * \endcode
 *
 * If you try to assign the result of an expression which does not
 * match the type of the variable it is assigned to, you will get a
 * compiler error. For example, the following will not compile:
 * \code
 * Time<1> = Seconds (10.0) * Seconds (1.5);
 * \endcode
 *
 * You can also use the following non-member functions to manipulate
 * any of these ns3::TimeUnit object:
 *  - \ref ns3-Time-Abs ns3::Abs
 *  - \ref ns3-Time-Max ns3::Max
 *  - \ref ns3-Time-Min ns3::Min
 */
/**
 * \ingroup time
 * \brief keep track of time values and allow control of global simulation resolution
 *
 * This class defines all the classic C++ arithmetic
 * operators +, -, *, /, and all the classic comparison operators:
 * ==, !=, <, >, <=, >=. It is thus easy to add, substract, or
 * multiply multiple Time objects.
 *
 * The ns3::uint64_t, ns3::TimeSquare, and ns3::TimeInvert classes
 * are backward-compatibility aliases for ns3::Time.
 *
 * For example:
 * \code
 * Time t1 = Seconds (10.0);
 * Time t2 = Seconds (10.0);
 * Time t3 = t1 * t2;
 * Time t4 = t1 / t2;
 * Time t5 = t3 * t1;
 * Time t6 = t1 / t5;
 * Time t7 = t3;
 * \endcode
 *
 * You can also use the following non-member functions to manipulate
 * any of these ns3::Time object:
 *  - \ref ns3-Time-Abs ns3::Abs
 *  - \ref ns3-Time-Max ns3::Max
 *  - \ref ns3-Time-Min ns3::Min
 *
 * This class also controls
 * the resolution of the underlying time value . The default resolution
 * is nanoseconds. That is, TimeStep (1).GetNanoSeconds () will return
 * 1. It is possible to either increase or decrease the resolution and the
 * code tries really hard to make this easy.
 *
 * If your resolution is X (say, nanoseconds) and if you create Time objects 
 * with a lower resolution (say, picoseconds), don't expect that this 
 * code will return 1: PicoSeconds (1).GetPicoSeconds (). It will most 
 * likely return 0 because the Time object has only 64 bits of fractional 
 * precision which means that PicoSeconds (1) is stored as a 64-bit aproximation
 * of 1/1000 in the Time object. If you later multiply it again by the exact 
 * value 1000, the result is unlikely to be 1 exactly. It will be close to
 * 1 but not exactly 1.
 * 
 * In general, it is thus a really bad idea to try to use time objects of a
 * resolution higher than the global resolution controlled through 
 * Time::SetResolution. If you do need to use picoseconds, it's thus best
 * to switch the global resolution to picoseconds to avoid nasty surprises.
 *
 * Another important issue to keep in mind is that if you increase the
 * global resolution, you also implicitely decrease the range of your simulation.
 * i.e., the global simulation time is stored in a 64 bit integer whose interpretation
 * will depend on the global resolution so, 2^64 picoseconds which is the maximum
 * duration of your simulation if the global resolution is picoseconds 
 * is smaller than 2^64 nanoseconds which is the maximum duration of your simulation
 * if the global resolution is nanoseconds.
 *
 * Finally, don't even think about ever changing the global resolution after
 * creating Time objects: all Time objects created before the call to SetResolution
 * will contain values which are not updated to the new resolution. In practice,
 * the default value for the attributes of many models is indeed calculated
 * before the main function of the main program enters. Because of this, if you
 * use one of these models (and it's likely), it's going to be hard to change
 * the global simulation resolution in a way which gives reasonable results. This
 * issue has been filed as bug 954 in the ns-3 bugzilla installation.
 */
class Time
{
public:
  /**
   * The unit to use to interpret a number representing time
   */
  enum Unit
  {
    S  = 0,
    MS = 1,
    US = 2,
    NS = 3,
    PS = 4,
    FS = 5,
    LAST = 6
  };

  inline Time &operator = (const Time &o)
  {
    m_data = o.m_data;
    return *this;
  }
  inline Time ()
    : m_data ()
  {}
  inline Time(const Time &o)
    : m_data (o.m_data)
  {}
  explicit inline Time (double v)
    : m_data (lround (v))
  {}
  explicit inline Time (int v)
    : m_data (v)
  {}
  explicit inline Time (long int v)
    : m_data (v)
  {}
  explicit inline Time (long long int v)
    : m_data (v)
  {}
  explicit inline Time (unsigned int v)
    : m_data (v)
  {}
  explicit inline Time (unsigned long int v)
    : m_data (v)
  {}
  explicit inline Time (unsigned long long int v)
    : m_data (v)
  {}

  /**
   * \brief String constructor
   * Construct Time object from common time expressions like "
   * 1ms" or "10s".  Supported units include:
   * - s  (seconds)
   * - ms (milliseconds)
   * - us (microseconds)
   * - ns (nanoseconds)
   * - ps (picoseconds)
   * - fs (femtoseconds)
   *
   * There can be no white space between the numerical portion
   * and the units.  Any otherwise malformed string causes a fatal error to
   * occur.
   * \param s The string to parse into a Time
   */
  explicit Time (const std::string & s);

  /**
   * \return true if the time is zero, false otherwise.
   */
  inline bool IsZero (void) const
  {
    return m_data == 0;
  }
  /**
   * \return true if the time is negative or zero, false otherwise.
   */
  inline bool IsNegative (void) const
  {
    return m_data <= 0;
  }
  /**
   * \return true if the time is positive or zero, false otherwise.
   */
  inline bool IsPositive (void) const
  {
    return m_data >= 0;
  }
  /**
   * \return true if the time is strictly negative, false otherwise.
   */
  inline bool IsStrictlyNegative (void) const
  {
    return m_data < 0;
  }
  /**
   * \return true if the time is strictly positive, false otherwise.
   */
  inline bool IsStrictlyPositive (void) const
  {
    return m_data > 0;
  }

  inline int Compare (const Time &o) const
  {
    return (m_data < o.m_data) ? -1 : (m_data == o.m_data) ? 0 : 1;
  }

  /**
   * \returns an approximation in seconds of the time stored in this
   *          instance.
   */
  inline double GetSeconds (void) const
  {
    return ToDouble (Time::S);
  }

  /**
   * \returns an approximation in milliseconds of the time stored in this
   *          instance.
   */
  inline int64_t GetMilliSeconds (void) const
  {
    return ToInteger (Time::MS);
  }
  /**
   * \returns an approximation in microseconds of the time stored in this
   *          instance.
   */
  inline int64_t GetMicroSeconds (void) const
  {
    return ToInteger (Time::US);
  }
  /**
   * \returns an approximation in nanoseconds of the time stored in this
   *          instance.
   */
  inline int64_t GetNanoSeconds (void) const
  {
    return ToInteger (Time::NS);
  }
  /**
   * \returns an approximation in picoseconds of the time stored in this
   *          instance.
   */
  inline int64_t GetPicoSeconds (void) const
  {
    return ToInteger (Time::PS);
  }
  /**
   * \returns an approximation in femtoseconds of the time stored in this
   *          instance.
   */
  inline int64_t GetFemtoSeconds (void) const
  {
    return ToInteger (Time::FS);
  }
  /**
   * \returns an approximation of the time stored in this
   *          instance in the units specified in m_tsPrecision.
   */
  inline int64_t GetTimeStep (void) const
  {
    return m_data;
  }
  inline double GetDouble (void) const
  {
    return m_data;
  }
  inline int64_t GetInteger (void) const
  {
    return GetTimeStep ();
  }


  /**
   * \param resolution the new resolution to use
   *
   * Change the global resolution used to convert all 
   * user-provided time values in Time objects and Time objects
   * in user-expected time units.
   */
  static void SetResolution (enum Unit resolution);
  /**
   * \returns the current global resolution.
   */
  static enum Unit GetResolution (void);
  /**
   * \param value to convert into a Time object
   * \param timeUnit the unit of the value to convert
   * \return a new Time object
   *
   * This method interprets the input value according to the input
   * unit and constructs a matching Time object.
   *
   * \sa FromDouble, ToDouble, ToInteger
   */
  inline static Time FromInteger (uint64_t value, enum Unit timeUnit)
  {
    struct Information *info = PeekInformation (timeUnit);
    if (info->fromMul)
      {
        value *= info->factor;
      }
    else
      {
        value /= info->factor;
      }
    return Time (value);
  }
  /**
   * \param timeUnit the unit of the value to return
   * \return int64_t time value
   *
   * Convert the input time into an integer value according to the requested
   * time unit.
   */
  inline int64_t ToInteger (enum Unit timeUnit) const
  {
    struct Information *info = PeekInformation (timeUnit);
    int64_t v = m_data;
    if (info->toMul)
      {
        v *= info->factor;
      }
    else
      {
        v /= info->factor; 
      }
    return v;
  }
  /**
   * \param value to convert into a Time object
   * \param timeUnit the unit of the value to convert
   * \return a new Time object
   *
   * \sa FromInteger, ToInteger, ToDouble
   */
  inline static Time FromDouble (double value, enum Unit timeUnit)
  {
    return From (int64x64_t (value), timeUnit);
  }
  /**
   * \param timeUnit the unit of the value to return
   * \return double time value
   *
   * Convert the input time into a floating point value according to the requested
   * time unit.
   */
  inline double ToDouble (enum Unit timeUnit) const
  {
    return To (timeUnit).GetDouble ();
  }
  static inline Time From (const int64x64_t &from, enum Unit timeUnit)
  {
    struct Information *info = PeekInformation (timeUnit);
    // DO NOT REMOVE this temporary variable. It's here
    // to work around a compiler bug in gcc 3.4
    int64x64_t retval = from; 
    if (info->fromMul)
      {
        retval *= info->timeFrom;
      }
    else
      {
        retval.MulByInvert (info->timeFrom);
      }
    return Time (retval);
  }
  inline int64x64_t To (enum Unit timeUnit) const
  {
    struct Information *info = PeekInformation (timeUnit);
    int64x64_t retval = int64x64_t (m_data);
    if (info->toMul)
      {
        retval *= info->timeTo;
      }
    else
      {
        retval.MulByInvert (info->timeTo);
      }
    return retval;
  }
  inline operator int64x64_t () const
  {
    return int64x64_t (m_data);
  }
  explicit inline Time (const int64x64_t &value)
    : m_data (value.GetHigh ())
  {}
  inline static Time From (const int64x64_t &value)
  {
    return Time (value);
  }

private:
  struct Information
  {
    bool toMul;
    bool fromMul;
    uint64_t factor;
    int64x64_t timeTo;
    int64x64_t timeFrom;
  };
  struct Resolution
  {
    struct Information info[LAST];
    enum Time::Unit unit;
  };

  static inline struct Resolution *PeekResolution (void)
  {
    static struct Time::Resolution resolution = GetNsResolution ();
    return &resolution;
  }
  static inline struct Information *PeekInformation (enum Unit timeUnit)
  {
    return &(PeekResolution ()->info[timeUnit]);
  }

  static struct Resolution GetNsResolution (void);
  static void SetResolution (enum Unit unit, struct Resolution *resolution);

  friend bool operator == (const Time &lhs, const Time &rhs);
  friend bool operator != (const Time &lhs, const Time &rhs);
  friend bool operator <= (const Time &lhs, const Time &rhs);
  friend bool operator >= (const Time &lhs, const Time &rhs);
  friend bool operator < (const Time &lhs, const Time &rhs);
  friend bool operator > (const Time &lhs, const Time &rhs);
  friend Time operator + (const Time &lhs, const Time &rhs);
  friend Time operator - (const Time &lhs, const Time &rhs);
  friend Time &operator += (Time &lhs, const Time &rhs);
  friend Time &operator -= (Time &lhs, const Time &rhs);
  friend Time Abs (const Time &time);
  friend Time Max (const Time &ta, const Time &tb);
  friend Time Min (const Time &ta, const Time &tb);

  int64_t m_data;
};

inline bool
operator == (const Time &lhs, const Time &rhs)
{
  return lhs.m_data == rhs.m_data;
}
inline bool
operator != (const Time &lhs, const Time &rhs)
{
  return lhs.m_data != rhs.m_data;
}
inline bool
operator <= (const Time &lhs, const Time &rhs)
{
  return lhs.m_data <= rhs.m_data;
}
inline bool
operator >= (const Time &lhs, const Time &rhs)
{
  return lhs.m_data >= rhs.m_data;
}
inline bool
operator < (const Time &lhs, const Time &rhs)
{
  return lhs.m_data < rhs.m_data;
}
inline bool
operator > (const Time &lhs, const Time &rhs)
{
  return lhs.m_data > rhs.m_data;
}
inline Time operator + (const Time &lhs, const Time &rhs)
{
  return Time (lhs.m_data + rhs.m_data);
}
inline Time operator - (const Time &lhs, const Time &rhs)
{
  return Time (lhs.m_data - rhs.m_data);
}
inline Time &operator += (Time &lhs, const Time &rhs)
{
  lhs.m_data += rhs.m_data;
  return lhs;
}
inline Time &operator -= (Time &lhs, const Time &rhs)
{
  lhs.m_data -= rhs.m_data;
  return lhs;
}

/**
 * \anchor ns3-Time-Abs
 * \relates ns3::TimeUnit
 * \param time the input value
 * \returns the absolute value of the input value.
 */
inline Time Abs (const Time &time)
{
  return Time ((time.m_data < 0) ? -time.m_data : time.m_data);
}
/**
 * \anchor ns3-Time-Max
 * \relates ns3::TimeUnit
 * \param ta the first value
 * \param tb the seconds value
 * \returns the max of the two input values.
 */
inline Time Max (const Time &ta, const Time &tb)
{
  return Time ((ta.m_data < tb.m_data) ? tb : ta);
}
/**
 * \anchor ns3-Time-Min
 * \relates ns3::TimeUnit
 * \param ta the first value
 * \param tb the seconds value
 * \returns the min of the two input values.
 */
inline Time Min (const Time &ta, const Time &tb)
{
  return Time ((ta.m_data > tb.m_data) ? tb : ta);
}


std::ostream& operator<< (std::ostream& os, const Time & time);
std::istream& operator>> (std::istream& is, Time & time);

/**
 * \brief create ns3::Time instances in units of seconds.
 *
 * For example:
 * \code
 * Time t = Seconds (2.0);
 * Simulator::Schedule (Seconds (5.0), ...);
 * \endcode
 * \param seconds seconds value
 */
inline Time Seconds (double seconds)
{
  return Time::FromDouble (seconds, Time::S);
}

/**
 * \brief create ns3::Time instances in units of milliseconds.
 *
 * For example:
 * \code
 * Time t = MilliSeconds (2);
 * Simulator::Schedule (MilliSeconds (5), ...);
 * \endcode
 * \param ms milliseconds value
 */
inline Time MilliSeconds (uint64_t ms)
{
  return Time::FromInteger (ms, Time::MS);
}
/**
 * \brief create ns3::Time instances in units of microseconds.
 *
 * For example:
 * \code
 * Time t = MicroSeconds (2);
 * Simulator::Schedule (MicroSeconds (5), ...);
 * \endcode
 * \param us microseconds value
 */
inline Time MicroSeconds (uint64_t us)
{
  return Time::FromInteger (us, Time::US);
}
/**
 * \brief create ns3::Time instances in units of nanoseconds.
 *
 * For example:
 * \code
 * Time t = NanoSeconds (2);
 * Simulator::Schedule (NanoSeconds (5), ...);
 * \endcode
 * \param ns nanoseconds value
 */
inline Time NanoSeconds (uint64_t ns)
{
  return Time::FromInteger (ns, Time::NS);
}
/**
 * \brief create ns3::Time instances in units of picoseconds.
 *
 * For example:
 * \code
 * Time t = PicoSeconds (2);
 * Simulator::Schedule (PicoSeconds (5), ...);
 * \endcode
 * \param ps picoseconds value
 */
inline Time PicoSeconds (uint64_t ps)
{
  return Time::FromInteger (ps, Time::PS);
}
/**
 * \brief create ns3::Time instances in units of femtoseconds.
 *
 * For example:
 * \code
 * Time t = FemtoSeconds (2);
 * Simulator::Schedule (FemtoSeconds (5), ...);
 * \endcode
 * \param fs femtoseconds value
 */
inline Time FemtoSeconds (uint64_t fs)
{
  return Time::FromInteger (fs, Time::FS);
}


inline Time Seconds (int64x64_t seconds)
{
  return Time::From (seconds, Time::S);
}
inline Time MilliSeconds (int64x64_t ms)
{
  return Time::From (ms, Time::MS);
}
inline Time MicroSeconds (int64x64_t us)
{
  return Time::From (us, Time::US);
}
inline Time NanoSeconds (int64x64_t ns)
{
  return Time::From (ns, Time::NS);
}
inline Time PicoSeconds (int64x64_t ps)
{
  return Time::From (ps, Time::PS);
}
inline Time FemtoSeconds (int64x64_t fs)
{
  return Time::From (fs, Time::FS);
}

// internal function not publicly documented
inline Time TimeStep (uint64_t ts)
{
  return Time (ts);
}

/**
 * \class ns3::TimeValue
 * \brief hold objects of type ns3::Time
 */


ATTRIBUTE_VALUE_DEFINE (Time);
ATTRIBUTE_ACCESSOR_DEFINE (Time);
ATTRIBUTE_CHECKER_DEFINE (Time);

} // namespace ns3

#endif /* TIME_H */