/usr/include/js/LIR.h is in libmozjs185-dev 1.8.5-1.0.0-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 | /* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is [Open Source Virtual Machine].
*
* The Initial Developer of the Original Code is
* Adobe System Incorporated.
* Portions created by the Initial Developer are Copyright (C) 2004-2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Adobe AS3 Team
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __nanojit_LIR__
#define __nanojit_LIR__
namespace nanojit
{
enum LOpcode
#if defined(_MSC_VER) && _MSC_VER >= 1400
#pragma warning(disable:4480) // nonstandard extension used: specifying underlying type for enum
: unsigned
#endif
{
#define OP___(op, number, repKind, retType, isCse) \
LIR_##op = (number),
#include "LIRopcode.tbl"
LIR_sentinel,
#undef OP___
#ifdef NANOJIT_64BIT
# define PTR_SIZE(a,b) b
#else
# define PTR_SIZE(a,b) a
#endif
// Pointer-sized synonyms.
LIR_paramp = PTR_SIZE(LIR_parami, LIR_paramq),
LIR_retp = PTR_SIZE(LIR_reti, LIR_retq),
LIR_livep = PTR_SIZE(LIR_livei, LIR_liveq),
LIR_ldp = PTR_SIZE(LIR_ldi, LIR_ldq),
LIR_stp = PTR_SIZE(LIR_sti, LIR_stq),
LIR_callp = PTR_SIZE(LIR_calli, LIR_callq),
LIR_eqp = PTR_SIZE(LIR_eqi, LIR_eqq),
LIR_ltp = PTR_SIZE(LIR_lti, LIR_ltq),
LIR_gtp = PTR_SIZE(LIR_gti, LIR_gtq),
LIR_lep = PTR_SIZE(LIR_lei, LIR_leq),
LIR_gep = PTR_SIZE(LIR_gei, LIR_geq),
LIR_ltup = PTR_SIZE(LIR_ltui, LIR_ltuq),
LIR_gtup = PTR_SIZE(LIR_gtui, LIR_gtuq),
LIR_leup = PTR_SIZE(LIR_leui, LIR_leuq),
LIR_geup = PTR_SIZE(LIR_geui, LIR_geuq),
LIR_addp = PTR_SIZE(LIR_addi, LIR_addq),
LIR_subp = PTR_SIZE(LIR_subi, LIR_subq),
LIR_addjovp = PTR_SIZE(LIR_addjovi, LIR_addjovq),
LIR_andp = PTR_SIZE(LIR_andi, LIR_andq),
LIR_orp = PTR_SIZE(LIR_ori, LIR_orq),
LIR_xorp = PTR_SIZE(LIR_xori, LIR_xorq),
LIR_lshp = PTR_SIZE(LIR_lshi, LIR_lshq),
LIR_rshp = PTR_SIZE(LIR_rshi, LIR_rshq),
LIR_rshup = PTR_SIZE(LIR_rshui, LIR_rshuq),
LIR_cmovp = PTR_SIZE(LIR_cmovi, LIR_cmovq)
};
// 32-bit integer comparisons must be contiguous, as must 64-bit integer
// comparisons and 64-bit float comparisons.
NanoStaticAssert(LIR_eqi + 1 == LIR_lti &&
LIR_eqi + 2 == LIR_gti &&
LIR_eqi + 3 == LIR_lei &&
LIR_eqi + 4 == LIR_gei &&
LIR_eqi + 5 == LIR_ltui &&
LIR_eqi + 6 == LIR_gtui &&
LIR_eqi + 7 == LIR_leui &&
LIR_eqi + 8 == LIR_geui);
#ifdef NANOJIT_64BIT
NanoStaticAssert(LIR_eqq + 1 == LIR_ltq &&
LIR_eqq + 2 == LIR_gtq &&
LIR_eqq + 3 == LIR_leq &&
LIR_eqq + 4 == LIR_geq &&
LIR_eqq + 5 == LIR_ltuq &&
LIR_eqq + 6 == LIR_gtuq &&
LIR_eqq + 7 == LIR_leuq &&
LIR_eqq + 8 == LIR_geuq);
#endif
NanoStaticAssert(LIR_eqd + 1 == LIR_ltd &&
LIR_eqd + 2 == LIR_gtd &&
LIR_eqd + 3 == LIR_led &&
LIR_eqd + 4 == LIR_ged);
// Various opcodes must be changeable to their opposite with op^1
// (although we use invertXyz() when possible, ie. outside static
// assertions).
NanoStaticAssert((LIR_jt^1) == LIR_jf && (LIR_jf^1) == LIR_jt);
NanoStaticAssert((LIR_xt^1) == LIR_xf && (LIR_xf^1) == LIR_xt);
NanoStaticAssert((LIR_lti^1) == LIR_gti && (LIR_gti^1) == LIR_lti);
NanoStaticAssert((LIR_lei^1) == LIR_gei && (LIR_gei^1) == LIR_lei);
NanoStaticAssert((LIR_ltui^1) == LIR_gtui && (LIR_gtui^1) == LIR_ltui);
NanoStaticAssert((LIR_leui^1) == LIR_geui && (LIR_geui^1) == LIR_leui);
#ifdef NANOJIT_64BIT
NanoStaticAssert((LIR_ltq^1) == LIR_gtq && (LIR_gtq^1) == LIR_ltq);
NanoStaticAssert((LIR_leq^1) == LIR_geq && (LIR_geq^1) == LIR_leq);
NanoStaticAssert((LIR_ltuq^1) == LIR_gtuq && (LIR_gtuq^1) == LIR_ltuq);
NanoStaticAssert((LIR_leuq^1) == LIR_geuq && (LIR_geuq^1) == LIR_leuq);
#endif
NanoStaticAssert((LIR_ltd^1) == LIR_gtd && (LIR_gtd^1) == LIR_ltd);
NanoStaticAssert((LIR_led^1) == LIR_ged && (LIR_ged^1) == LIR_led);
struct GuardRecord;
struct SideExit;
enum AbiKind {
ABI_FASTCALL,
ABI_THISCALL,
ABI_STDCALL,
ABI_CDECL
};
// This is much the same as LTy, but we need to distinguish signed and
// unsigned 32-bit ints so that they will be extended to 64-bits correctly
// on 64-bit platforms.
//
// All values must fit into three bits. See CallInfo for details.
enum ArgType {
ARGTYPE_V = 0, // void
ARGTYPE_I = 1, // int32_t
ARGTYPE_UI = 2, // uint32_t
#ifdef NANOJIT_64BIT
ARGTYPE_Q = 3, // uint64_t
#endif
ARGTYPE_D = 4, // double
// aliases
ARGTYPE_P = PTR_SIZE(ARGTYPE_I, ARGTYPE_Q), // pointer
ARGTYPE_B = ARGTYPE_I // bool
};
enum IndirectCall {
CALL_INDIRECT = 0
};
//-----------------------------------------------------------------------
// Aliasing
// --------
// *Aliasing* occurs when a single memory location can be accessed through
// multiple names. For example, consider this code:
//
// ld a[0]
// sti b[0]
// ld a[0]
//
// In general, it's possible that a[0] and b[0] may refer to the same
// memory location. This means, for example, that you cannot safely
// perform CSE on the two loads. However, if you know that 'a' cannot be
// an alias of 'b' (ie. the two loads do not alias with the store) then
// you can safely perform CSE.
//
// Access regions
// --------------
// Doing alias analysis precisely is difficult. But it turns out that
// keeping track of aliasing at a coarse level is enough to help with many
// optimisations. So we conceptually divide the memory that is accessible
// from LIR into a small number of "access regions" (aka. "Acc"). An
// access region may be non-contiguous. No two access regions can
// overlap. The union of all access regions covers all memory accessible
// from LIR.
//
// In general a (static) load or store may be executed more than once, and
// thus may access multiple regions; however, in practice almost all
// loads and stores will obviously access only a single region. A
// function called from LIR may load and/or store multiple access regions
// (even if executed only once).
//
// If two loads/stores/calls are known to not access the same region(s),
// then they do not alias.
//
// All regions are defined by the embedding. It makes sense to add new
// embedding-specific access regions when doing so will help with one or
// more optimisations.
//
// Access region sets and instruction markings
// -------------------------------------------
// Each load/store is marked with an "access region set" (aka. "AccSet"),
// which is a set of one or more access regions. This indicates which
// parts of LIR-accessible memory the load/store may touch.
//
// Each function called from LIR is also marked with an access region set
// for memory stored to by the function. (We could also have a marking
// for memory loads done by the function, but there's no need at the
// moment.) These markings apply to the function itself, not the call
// site, ie. they're not context-sensitive.
//
// These load/store/call markings MUST BE ACCURATE -- if not then invalid
// optimisations might occur that change the meaning of the code.
// However, they can safely be imprecise (ie. conservative), ie. a
// load/store/call can be marked with an access region set that is a
// superset of the actual access region set. Such imprecision is safe but
// may reduce optimisation opportunities.
//
// Optimisations that use access region info
// -----------------------------------------
// Currently only CseFilter uses this, and only for determining whether
// loads can be CSE'd. Note that CseFilter treats loads that are marked
// with a single access region precisely, but all loads marked with
// multiple access regions get lumped together. So if you can't mark a
// load with a single access region, you might as well use ACC_LOAD_ANY.
//-----------------------------------------------------------------------
// An access region set is represented as a bitset. Using a uint32_t
// restricts us to at most 32 alias regions for the moment. This could be
// expanded to a uint64_t easily if needed.
typedef uint32_t AccSet;
static const int NUM_ACCS = sizeof(AccSet) * 8;
// Some common (non-singleton) access region sets. ACCSET_NONE does not make
// sense for loads or stores (which must access at least one region), it
// only makes sense for calls.
//
static const AccSet ACCSET_NONE = 0x0;
static const AccSet ACCSET_ALL = 0xffffffff;
static const AccSet ACCSET_LOAD_ANY = ACCSET_ALL; // synonym
static const AccSet ACCSET_STORE_ANY = ACCSET_ALL; // synonym
inline bool isSingletonAccSet(AccSet accSet) {
// This is a neat way of testing if a value has only one bit set.
return (accSet & (accSet - 1)) == 0;
}
// Full AccSets don't fit into load and store instructions. But
// load/store AccSets almost always contain a single access region. We
// take advantage of this to create a compressed AccSet, MiniAccSet, that
// does fit.
//
// The 32 single-region AccSets get compressed into a number in the range
// 0..31 (according to the position of the set bit), and all other
// (multi-region) AccSets get converted into MINI_ACCSET_MULTIPLE. So the
// representation is lossy in the latter case, but that case is rare for
// loads/stores. We use a full AccSet for the storeAccSets of calls, for
// which multi-region AccSets are common.
//
// We wrap the uint8_t inside a struct to avoid the possiblity of subtle
// bugs caused by mixing up AccSet and MiniAccSet, which is easy to do.
// However, the struct gets padded inside LInsLd in an inconsistent way on
// Windows, so we actually store a MiniAccSetVal inside LInsLd. Sigh.
// But we use MiniAccSet everywhere else.
//
typedef uint8_t MiniAccSetVal;
struct MiniAccSet { MiniAccSetVal val; };
static const MiniAccSet MINI_ACCSET_MULTIPLE = { 99 };
static MiniAccSet compressAccSet(AccSet accSet) {
if (isSingletonAccSet(accSet)) {
MiniAccSet ret = { uint8_t(msbSet32(accSet)) };
return ret;
}
// If we got here, it must be a multi-region AccSet.
return MINI_ACCSET_MULTIPLE;
}
static AccSet decompressMiniAccSet(MiniAccSet miniAccSet) {
return (miniAccSet.val == MINI_ACCSET_MULTIPLE.val) ? ACCSET_ALL : (1 << miniAccSet.val);
}
// The LoadQual affects how a load can be optimised:
//
// - CONST: These loads are guaranteed to always return the same value
// during a single execution of a fragment (but the value is allowed to
// change between executions of the fragment). This means that the
// location is never stored to by the LIR, and is never modified by an
// external entity while the fragment is running.
//
// - NORMAL: These loads may be stored to by the LIR, but are never
// modified by an external entity while the fragment is running.
//
// - VOLATILE: These loads may be stored to by the LIR, and may be
// modified by an external entity while the fragment is running.
//
// This gives a lattice with the ordering: CONST < NORMAL < VOLATILE.
// As usual, it's safe to mark a load with a value higher (less precise)
// that actual, but it may result in fewer optimisations occurring.
//
// Generally CONST loads are highly amenable to optimisation (eg. CSE),
// VOLATILE loads are entirely unoptimisable, and NORMAL loads are in
// between and require some alias analysis to optimise.
//
// Note that CONST has a stronger meaning to "const" in C and C++; in C
// and C++ a "const" variable may be modified by an external entity, such
// as hardware. Hence "const volatile" makes sense in C and C++, but
// CONST+VOLATILE doesn't make sense in LIR.
//
// Note also that a 2-bit bitfield in LInsLd is used to hold LoadQual
// values, so you can one add one more value without expanding it.
//
enum LoadQual {
LOAD_CONST = 0,
LOAD_NORMAL = 1,
LOAD_VOLATILE = 2
};
struct CallInfo
{
private:
// In CallInfo::_typesig, each entry is three bits.
static const int TYPESIG_FIELDSZB = 3;
static const int TYPESIG_FIELDMASK = 7;
public:
uintptr_t _address;
uint32_t _typesig:27; // 9 3-bit fields indicating arg type, by ARGTYPE above (including ret type): a1 a2 a3 a4 a5 ret
AbiKind _abi:3;
uint32_t _isPure:1; // _isPure=1 means no side-effects, result only depends on args
AccSet _storeAccSet; // access regions stored by the function
verbose_only ( const char* _name; )
// The following encode 'r func()' through to 'r func(a1, a2, a3, a4, a5, a6, a7, a8)'.
static inline uint32_t typeSig0(ArgType r) {
return r;
}
static inline uint32_t typeSig1(ArgType r, ArgType a1) {
return a1 << TYPESIG_FIELDSZB*1 | typeSig0(r);
}
static inline uint32_t typeSig2(ArgType r, ArgType a1, ArgType a2) {
return a1 << TYPESIG_FIELDSZB*2 | typeSig1(r, a2);
}
static inline uint32_t typeSig3(ArgType r, ArgType a1, ArgType a2, ArgType a3) {
return a1 << TYPESIG_FIELDSZB*3 | typeSig2(r, a2, a3);
}
static inline uint32_t typeSig4(ArgType r, ArgType a1, ArgType a2, ArgType a3, ArgType a4) {
return a1 << TYPESIG_FIELDSZB*4 | typeSig3(r, a2, a3, a4);
}
static inline uint32_t typeSig5(ArgType r, ArgType a1, ArgType a2, ArgType a3,
ArgType a4, ArgType a5) {
return a1 << TYPESIG_FIELDSZB*5 | typeSig4(r, a2, a3, a4, a5);
}
static inline uint32_t typeSig6(ArgType r, ArgType a1, ArgType a2, ArgType a3,
ArgType a4, ArgType a5, ArgType a6) {
return a1 << TYPESIG_FIELDSZB*6 | typeSig5(r, a2, a3, a4, a5, a6);
}
static inline uint32_t typeSig7(ArgType r, ArgType a1, ArgType a2, ArgType a3,
ArgType a4, ArgType a5, ArgType a6, ArgType a7) {
return a1 << TYPESIG_FIELDSZB*7 | typeSig6(r, a2, a3, a4, a5, a6, a7);
}
static inline uint32_t typeSig8(ArgType r, ArgType a1, ArgType a2, ArgType a3, ArgType a4,
ArgType a5, ArgType a6, ArgType a7, ArgType a8) {
return a1 << TYPESIG_FIELDSZB*8 | typeSig7(r, a2, a3, a4, a5, a6, a7, a8);
}
// Encode 'r func(a1, ..., aN))'
static inline uint32_t typeSigN(ArgType r, int N, ArgType a[]) {
uint32_t typesig = r;
for (int i = 0; i < N; i++) {
typesig |= a[i] << TYPESIG_FIELDSZB*(N-i);
}
return typesig;
}
uint32_t count_args() const;
uint32_t count_int32_args() const;
// Nb: uses right-to-left order, eg. sizes[0] is the size of the right-most arg.
// XXX: See bug 525815 for fixing this.
uint32_t getArgTypes(ArgType* types) const;
inline ArgType returnType() const {
return ArgType(_typesig & TYPESIG_FIELDMASK);
}
inline bool isIndirect() const {
return _address < 256;
}
};
/*
* Record for extra data used to compile switches as jump tables.
*/
struct SwitchInfo
{
NIns** table; // Jump table; a jump address is NIns*
uint32_t count; // Number of table entries
// Index value at last execution of the switch. The index value
// is the offset into the jump table. Thus it is computed as
// (switch expression) - (lowest case value).
uint32_t index;
};
// Array holding the 'isCse' field from LIRopcode.tbl.
extern const int8_t isCses[]; // cannot be uint8_t, some values are negative
inline bool isCseOpcode(LOpcode op) {
NanoAssert(isCses[op] != -1); // see LIRopcode.tbl to understand this
return isCses[op] == 1;
}
inline bool isLiveOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_liveq ||
#endif
op == LIR_livei || op == LIR_lived;
}
inline bool isRetOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_retq ||
#endif
op == LIR_reti || op == LIR_retd;
}
inline bool isCmovOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_cmovq ||
#endif
op == LIR_cmovi ||
op == LIR_cmovd;
}
inline bool isCmpIOpcode(LOpcode op) {
return LIR_eqi <= op && op <= LIR_geui;
}
inline bool isCmpSIOpcode(LOpcode op) {
return LIR_eqi <= op && op <= LIR_gei;
}
inline bool isCmpUIOpcode(LOpcode op) {
return LIR_eqi == op || (LIR_ltui <= op && op <= LIR_geui);
}
#ifdef NANOJIT_64BIT
inline bool isCmpQOpcode(LOpcode op) {
return LIR_eqq <= op && op <= LIR_geuq;
}
inline bool isCmpSQOpcode(LOpcode op) {
return LIR_eqq <= op && op <= LIR_geq;
}
inline bool isCmpUQOpcode(LOpcode op) {
return LIR_eqq == op || (LIR_ltuq <= op && op <= LIR_geuq);
}
#endif
inline bool isCmpDOpcode(LOpcode op) {
return LIR_eqd <= op && op <= LIR_ged;
}
inline bool isCmpOpcode(LOpcode op) {
return isCmpIOpcode(op) ||
#if defined NANOJIT_64BIT
isCmpQOpcode(op) ||
#endif
isCmpDOpcode(op);
}
inline LOpcode invertCondJmpOpcode(LOpcode op) {
NanoAssert(op == LIR_jt || op == LIR_jf);
return LOpcode(op ^ 1);
}
inline LOpcode invertCondGuardOpcode(LOpcode op) {
NanoAssert(op == LIR_xt || op == LIR_xf);
return LOpcode(op ^ 1);
}
inline LOpcode invertCmpOpcode(LOpcode op) {
NanoAssert(isCmpOpcode(op));
return LOpcode(op ^ 1);
}
inline LOpcode getCallOpcode(const CallInfo* ci) {
LOpcode op = LIR_callp;
switch (ci->returnType()) {
case ARGTYPE_V: op = LIR_callv; break;
case ARGTYPE_I:
case ARGTYPE_UI: op = LIR_calli; break;
#ifdef NANOJIT_64BIT
case ARGTYPE_Q: op = LIR_callq; break;
#endif
case ARGTYPE_D: op = LIR_calld; break;
default: NanoAssert(0); break;
}
return op;
}
LOpcode arithOpcodeD2I(LOpcode op);
#ifdef NANOJIT_64BIT
LOpcode cmpOpcodeI2Q(LOpcode op);
#endif
LOpcode cmpOpcodeD2I(LOpcode op);
LOpcode cmpOpcodeD2UI(LOpcode op);
// Array holding the 'repKind' field from LIRopcode.tbl.
extern const uint8_t repKinds[];
enum LTy {
LTy_V, // void: no value/no type
LTy_I, // int: 32-bit integer
#ifdef NANOJIT_64BIT
LTy_Q, // quad: 64-bit integer
#endif
LTy_D, // double: 64-bit float
LTy_P = PTR_SIZE(LTy_I, LTy_Q) // word-sized integer
};
// Array holding the 'retType' field from LIRopcode.tbl.
extern const LTy retTypes[];
inline RegisterMask rmask(Register r)
{
return RegisterMask(1) << REGNUM(r);
}
//-----------------------------------------------------------------------
// Low-level instructions. This is a bit complicated, because we have a
// variable-width representation to minimise space usage.
//
// - Instruction size is always an integral multiple of word size.
//
// - Every instruction has at least one word, holding the opcode and the
// reservation info ("SharedFields"). That word is in class LIns.
//
// - Beyond that, most instructions have 1, 2 or 3 extra words. These
// extra words are in classes LInsOp1, LInsOp2, etc (collectively called
// "LInsXYZ" in what follows). Each LInsXYZ class also contains an LIns,
// accessible by the 'ins' member, which holds the LIns data.
//
// - LIR is written forward, but read backwards. When reading backwards,
// in order to find the opcode, it must be in a predictable place in the
// LInsXYZ isn't affected by instruction width. Therefore, the LIns
// word (which contains the opcode) is always the *last* word in an
// instruction.
//
// - Each instruction is created by casting pre-allocated bytes from a
// LirBuffer to the LInsXYZ type. Therefore there are no constructors
// for LIns or LInsXYZ.
//
// - The standard handle for an instruction is a LIns*. This actually
// points to the LIns word, ie. to the final word in the instruction.
// This is a bit odd, but it allows the instruction's opcode to be
// easily accessed. Once you've looked at the opcode and know what kind
// of instruction it is, if you want to access any of the other words,
// you need to use toLInsXYZ(), which takes the LIns* and gives you an
// LInsXYZ*, ie. the pointer to the actual start of the instruction's
// bytes. From there you can access the instruction-specific extra
// words.
//
// - However, from outside class LIns, LInsXYZ isn't visible, nor is
// toLInsXYZ() -- from outside LIns, all LIR instructions are handled
// via LIns pointers and get/set methods are used for all LIns/LInsXYZ
// accesses. In fact, all data members in LInsXYZ are private and can
// only be accessed by LIns, which is a friend class. The only thing
// anyone outside LIns can do with a LInsXYZ is call getLIns().
//
// - An example Op2 instruction and the likely pointers to it (each line
// represents a word, and pointers to a line point to the start of the
// word on that line):
//
// [ oprnd_2 <-- LInsOp2* insOp2 == toLInsOp2(ins)
// oprnd_1
// opcode + resv ] <-- LIns* ins
//
// - LIR_skip instructions are used to link code chunks. If the first
// instruction on a chunk isn't a LIR_start, it will be a skip, and the
// skip's operand will point to the last LIns on the preceding chunk.
// LInsSk has the same layout as LInsOp1, but we represent it as a
// different class because there are some places where we treat
// skips specially and so having it separate seems like a good idea.
//
// - Various things about the size and layout of LIns and LInsXYZ are
// statically checked in staticSanityCheck(). In particular, this is
// worthwhile because there's nothing that guarantees that all the
// LInsXYZ classes have a size that is a multiple of word size (but in
// practice all sane compilers use a layout that results in this). We
// also check that every LInsXYZ is word-aligned in
// LirBuffer::makeRoom(); this seems sensible to avoid potential
// slowdowns due to misalignment. It relies on chunks themselves being
// word-aligned, which is extremely likely.
//
// - There is an enum, LInsRepKind, with one member for each of the
// LInsXYZ kinds. Each opcode is categorised with its LInsRepKind value
// in LIRopcode.tbl, and this is used in various places.
//-----------------------------------------------------------------------
enum LInsRepKind {
// LRK_XYZ corresponds to class LInsXYZ.
LRK_Op0,
LRK_Op1,
LRK_Op2,
LRK_Op3,
LRK_Ld,
LRK_St,
LRK_Sk,
LRK_C,
LRK_P,
LRK_I,
LRK_QorD,
LRK_Jtbl,
LRK_None // this one is used for unused opcode numbers
};
class LInsOp0;
class LInsOp1;
class LInsOp2;
class LInsOp3;
class LInsLd;
class LInsSt;
class LInsSk;
class LInsC;
class LInsP;
class LInsI;
class LInsQorD;
class LInsJtbl;
class LIns
{
private:
// SharedFields: fields shared by all LIns kinds.
//
// The .inReg, .regnum, .inAr and .arIndex fields form a "reservation"
// that is used temporarily during assembly to record information
// relating to register allocation. See class RegAlloc for more
// details. Note: all combinations of .inReg/.inAr are possible, ie.
// 0/0, 0/1, 1/0, 1/1.
//
// The .isResultLive field is only used for instructions that return
// results. It indicates if the result is live. It's set (if
// appropriate) and used only during the codegen pass.
//
struct SharedFields {
uint32_t inReg:1; // if 1, 'reg' is active
uint32_t regnum:7;
uint32_t inAr:1; // if 1, 'arIndex' is active
uint32_t isResultLive:1; // if 1, the instruction's result is live
uint32_t arIndex:14; // index into stack frame; displ is -4*arIndex
LOpcode opcode:8; // instruction's opcode
};
union {
SharedFields sharedFields;
// Force sizeof(LIns)==8 and 8-byte alignment on 64-bit machines.
// This is necessary because sizeof(SharedFields)==4 and we want all
// instances of LIns to be pointer-aligned.
void* wholeWord;
};
inline void initSharedFields(LOpcode opcode)
{
// We must zero .inReg, .inAR and .isResultLive, but zeroing the
// whole word is easier. Then we set the opcode.
wholeWord = 0;
sharedFields.opcode = opcode;
}
// LIns-to-LInsXYZ converters.
inline LInsOp0* toLInsOp0() const;
inline LInsOp1* toLInsOp1() const;
inline LInsOp2* toLInsOp2() const;
inline LInsOp3* toLInsOp3() const;
inline LInsLd* toLInsLd() const;
inline LInsSt* toLInsSt() const;
inline LInsSk* toLInsSk() const;
inline LInsC* toLInsC() const;
inline LInsP* toLInsP() const;
inline LInsI* toLInsI() const;
inline LInsQorD* toLInsQorD() const;
inline LInsJtbl*toLInsJtbl()const;
void staticSanityCheck();
public:
// LIns initializers.
inline void initLInsOp0(LOpcode opcode);
inline void initLInsOp1(LOpcode opcode, LIns* oprnd1);
inline void initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2);
inline void initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3);
inline void initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet, LoadQual loadQual);
inline void initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet);
inline void initLInsSk(LIns* prevLIns);
// Nb: args[] must be allocated and initialised before being passed in;
// initLInsC() just copies the pointer into the LInsC.
inline void initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci);
inline void initLInsP(int32_t arg, int32_t kind);
inline void initLInsI(LOpcode opcode, int32_t immI);
inline void initLInsQorD(LOpcode opcode, uint64_t immQorD);
inline void initLInsJtbl(LIns* index, uint32_t size, LIns** table);
LOpcode opcode() const { return sharedFields.opcode; }
// Generally, void instructions (statements) are always live and
// non-void instructions (expressions) are live if used by another
// live instruction. But there are some trickier cases.
// Any non-void instruction can be marked isResultLive=1 even
// when it is unreachable, e.g. due to an always-taken branch.
// The assembler marks it live if it sees any uses, regardless of
// whether those uses are in reachable code or not.
bool isLive() const {
return isV() ||
sharedFields.isResultLive ||
(isCall() && !callInfo()->_isPure) || // impure calls are always live
isop(LIR_paramp); // LIR_paramp is always live
}
void setResultLive() {
NanoAssert(!isV());
sharedFields.isResultLive = 1;
}
// XXX: old reservation manipulating functions. See bug 538924.
// Replacement strategy:
// - deprecated_markAsClear() --> clearReg() and/or clearArIndex()
// - deprecated_hasKnownReg() --> isInReg()
// - deprecated_getReg() --> getReg() after checking isInReg()
//
void deprecated_markAsClear() {
sharedFields.inReg = 0;
sharedFields.inAr = 0;
}
bool deprecated_hasKnownReg() {
NanoAssert(isExtant());
return isInReg();
}
Register deprecated_getReg() {
NanoAssert(isExtant());
if (isInReg()) {
Register r = { sharedFields.regnum };
return r;
} else {
return deprecated_UnknownReg;
}
}
uint32_t deprecated_getArIndex() {
NanoAssert(isExtant());
return ( isInAr() ? sharedFields.arIndex : 0 );
}
// Reservation manipulation.
//
// "Extant" mean "in existence, still existing, surviving". In other
// words, has the value been computed explicitly (not folded into
// something else) and is it still available (in a register or spill
// slot) for use?
bool isExtant() {
return isInReg() || isInAr();
}
bool isInReg() {
return sharedFields.inReg;
}
bool isInRegMask(RegisterMask allow) {
return isInReg() && (rmask(getReg()) & allow);
}
Register getReg() {
NanoAssert(isInReg());
Register r = { sharedFields.regnum };
return r;
}
void setReg(Register r) {
sharedFields.inReg = 1;
sharedFields.regnum = REGNUM(r);
}
void clearReg() {
sharedFields.inReg = 0;
}
bool isInAr() {
return sharedFields.inAr;
}
uint32_t getArIndex() {
NanoAssert(isInAr());
return sharedFields.arIndex;
}
void setArIndex(uint32_t arIndex) {
sharedFields.inAr = 1;
sharedFields.arIndex = arIndex;
}
void clearArIndex() {
sharedFields.inAr = 0;
}
// For various instruction kinds.
inline LIns* oprnd1() const;
inline LIns* oprnd2() const;
inline LIns* oprnd3() const;
// For branches.
inline LIns* getTarget() const;
inline void setTarget(LIns* label);
// For guards.
inline GuardRecord* record() const;
// For loads.
inline LoadQual loadQual() const;
// For loads/stores.
inline int32_t disp() const;
inline MiniAccSet miniAccSet() const;
inline AccSet accSet() const;
// For LInsSk.
inline LIns* prevLIns() const;
// For LInsP.
inline uint8_t paramArg() const;
inline uint8_t paramKind() const;
// For LInsI.
inline int32_t immI() const;
// For LInsQorD.
#ifdef NANOJIT_64BIT
inline int32_t immQlo() const;
inline uint64_t immQ() const;
#endif
inline int32_t immDlo() const;
inline int32_t immDhi() const;
inline double immD() const;
inline uint64_t immDasQ() const;
// For LIR_allocp.
inline int32_t size() const;
inline void setSize(int32_t nbytes);
// For LInsC.
inline LIns* arg(uint32_t i) const; // right-to-left-order: arg(0) is rightmost
inline uint32_t argc() const;
inline LIns* callArgN(uint32_t n) const;
inline const CallInfo* callInfo() const;
// For LIR_jtbl
inline uint32_t getTableSize() const;
inline LIns* getTarget(uint32_t index) const;
inline void setTarget(uint32_t index, LIns* label) const;
// isLInsXYZ() returns true if the instruction has the LInsXYZ form.
// Note that there is some overlap with other predicates, eg.
// isStore()==isLInsSt(), isCall()==isLInsC(), but that's ok; these
// ones are used mostly to check that opcodes are appropriate for
// instruction layouts, the others are used for non-debugging
// purposes.
bool isLInsOp0() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op0 == repKinds[opcode()];
}
bool isLInsOp1() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op1 == repKinds[opcode()];
}
bool isLInsOp2() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op2 == repKinds[opcode()];
}
bool isLInsOp3() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op3 == repKinds[opcode()];
}
bool isLInsLd() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Ld == repKinds[opcode()];
}
bool isLInsSt() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_St == repKinds[opcode()];
}
bool isLInsSk() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Sk == repKinds[opcode()];
}
bool isLInsC() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_C == repKinds[opcode()];
}
bool isLInsP() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_P == repKinds[opcode()];
}
bool isLInsI() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_I == repKinds[opcode()];
}
bool isLInsQorD() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_QorD == repKinds[opcode()];
}
bool isLInsJtbl() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Jtbl == repKinds[opcode()];
}
// LIns predicates.
bool isop(LOpcode o) const {
return opcode() == o;
}
bool isRet() const {
return isRetOpcode(opcode());
}
bool isCmp() const {
return isCmpOpcode(opcode());
}
bool isCall() const {
return isop(LIR_callv) ||
isop(LIR_calli) ||
#if defined NANOJIT_64BIT
isop(LIR_callq) ||
#endif
isop(LIR_calld);
}
bool isCmov() const {
return isCmovOpcode(opcode());
}
bool isStore() const {
return isLInsSt();
}
bool isLoad() const {
return isLInsLd();
}
bool isGuard() const {
return isop(LIR_x) || isop(LIR_xf) || isop(LIR_xt) ||
isop(LIR_xbarrier) || isop(LIR_xtbl) ||
isop(LIR_addxovi) || isop(LIR_subxovi) || isop(LIR_mulxovi);
}
bool isJov() const {
return
#ifdef NANOJIT_64BIT
isop(LIR_addjovq) || isop(LIR_subjovq) ||
#endif
isop(LIR_addjovi) || isop(LIR_subjovi) || isop(LIR_muljovi);
}
// True if the instruction is a 32-bit integer immediate.
bool isImmI() const {
return isop(LIR_immi);
}
// True if the instruction is a 32-bit integer immediate and
// has the value 'val' when treated as a 32-bit signed integer.
bool isImmI(int32_t val) const {
return isImmI() && immI()==val;
}
#ifdef NANOJIT_64BIT
// True if the instruction is a 64-bit integer immediate.
bool isImmQ() const {
return isop(LIR_immq);
}
#endif
// True if the instruction is a pointer-sized integer immediate.
bool isImmP() const
{
#ifdef NANOJIT_64BIT
return isImmQ();
#else
return isImmI();
#endif
}
// True if the instruction is a 64-bit float immediate.
bool isImmD() const {
return isop(LIR_immd);
}
// True if the instruction is a 64-bit integer or float immediate.
bool isImmQorD() const {
return
#ifdef NANOJIT_64BIT
isImmQ() ||
#endif
isImmD();
}
// True if the instruction an any type of immediate.
bool isImmAny() const {
return isImmI() || isImmQorD();
}
bool isBranch() const {
return isop(LIR_jt) || isop(LIR_jf) || isop(LIR_j) || isop(LIR_jtbl) || isJov();
}
LTy retType() const {
return retTypes[opcode()];
}
bool isV() const {
return retType() == LTy_V;
}
bool isI() const {
return retType() == LTy_I;
}
#ifdef NANOJIT_64BIT
bool isQ() const {
return retType() == LTy_Q;
}
#endif
bool isD() const {
return retType() == LTy_D;
}
bool isQorD() const {
return
#ifdef NANOJIT_64BIT
isQ() ||
#endif
isD();
}
bool isP() const {
#ifdef NANOJIT_64BIT
return isQ();
#else
return isI();
#endif
}
inline void* immP() const
{
#ifdef NANOJIT_64BIT
return (void*)immQ();
#else
return (void*)immI();
#endif
}
};
typedef SeqBuilder<LIns*> InsList;
typedef SeqBuilder<char*> StringList;
// 0-operand form. Used for LIR_start and LIR_label.
class LInsOp0
{
private:
friend class LIns;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 1-operand form. Used for LIR_reti, unary arithmetic/logic ops, etc.
class LInsOp1
{
private:
friend class LIns;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 2-operand form. Used for guards, branches, comparisons, binary
// arithmetic/logic ops, etc.
class LInsOp2
{
private:
friend class LIns;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 3-operand form. Used for conditional moves, jov branches, and xov guards.
class LInsOp3
{
private:
friend class LIns;
LIns* oprnd_3;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all loads.
class LInsLd
{
private:
friend class LIns;
// Nb: the LIR writer pipeline handles things if a displacement
// exceeds 16 bits. This is rare, but does happen occasionally. We
// could go to 24 bits but then it would happen so rarely that the
// handler code would be difficult to test and thus untrustworthy.
//
// Nb: the types of these bitfields are all 32-bit integers to ensure
// they are fully packed on Windows, sigh. Also, 'loadQual' is
// unsigned to ensure the values 0, 1, and 2 all fit in 2 bits.
//
// Nb: explicit signed keyword for bitfield types is required,
// some compilers may treat them as unsigned without it.
// See Bugzilla 584219 comment #18
signed int disp:16;
signed int miniAccSetVal:8;
uint32_t loadQual:2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all stores.
class LInsSt
{
private:
friend class LIns;
int16_t disp;
MiniAccSetVal miniAccSetVal;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_skip.
class LInsSk
{
private:
friend class LIns;
LIns* prevLIns;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all variants of LIR_call.
class LInsC
{
private:
friend class LIns;
// Arguments in reverse order, just like insCall() (ie. args[0] holds
// the rightmost arg). The array should be allocated by the same
// allocator as the LIR buffers, because it has the same lifetime.
LIns** args;
const CallInfo* ci;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_paramp.
class LInsP
{
private:
friend class LIns;
uintptr_t arg:8;
uintptr_t kind:8;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_immi and LIR_allocp.
class LInsI
{
private:
friend class LIns;
int32_t immI;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_immq and LIR_immd.
class LInsQorD
{
private:
friend class LIns;
int32_t immQorDlo;
int32_t immQorDhi;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_jtbl. 'oprnd_1' must be a uint32_t index in
// the range 0 <= index < size; no range check is performed.
// 'table' is an array of labels.
class LInsJtbl
{
private:
friend class LIns;
uint32_t size; // number of entries in table
LIns** table; // pointer to table[size] with same lifetime as this LInsJtbl
LIns* oprnd_1; // uint32_t index expression
LIns ins;
public:
LIns* getLIns() { return &ins; }
};
// Used only as a placeholder for OP___ macros for unused opcodes in
// LIRopcode.tbl.
class LInsNone
{
};
LInsOp0* LIns::toLInsOp0() const { return (LInsOp0* )(uintptr_t(this+1) - sizeof(LInsOp0 )); }
LInsOp1* LIns::toLInsOp1() const { return (LInsOp1* )(uintptr_t(this+1) - sizeof(LInsOp1 )); }
LInsOp2* LIns::toLInsOp2() const { return (LInsOp2* )(uintptr_t(this+1) - sizeof(LInsOp2 )); }
LInsOp3* LIns::toLInsOp3() const { return (LInsOp3* )(uintptr_t(this+1) - sizeof(LInsOp3 )); }
LInsLd* LIns::toLInsLd() const { return (LInsLd* )(uintptr_t(this+1) - sizeof(LInsLd )); }
LInsSt* LIns::toLInsSt() const { return (LInsSt* )(uintptr_t(this+1) - sizeof(LInsSt )); }
LInsSk* LIns::toLInsSk() const { return (LInsSk* )(uintptr_t(this+1) - sizeof(LInsSk )); }
LInsC* LIns::toLInsC() const { return (LInsC* )(uintptr_t(this+1) - sizeof(LInsC )); }
LInsP* LIns::toLInsP() const { return (LInsP* )(uintptr_t(this+1) - sizeof(LInsP )); }
LInsI* LIns::toLInsI() const { return (LInsI* )(uintptr_t(this+1) - sizeof(LInsI )); }
LInsQorD* LIns::toLInsQorD() const { return (LInsQorD*)(uintptr_t(this+1) - sizeof(LInsQorD)); }
LInsJtbl* LIns::toLInsJtbl() const { return (LInsJtbl*)(uintptr_t(this+1) - sizeof(LInsJtbl)); }
void LIns::initLInsOp0(LOpcode opcode) {
initSharedFields(opcode);
NanoAssert(isLInsOp0());
}
void LIns::initLInsOp1(LOpcode opcode, LIns* oprnd1) {
initSharedFields(opcode);
toLInsOp1()->oprnd_1 = oprnd1;
NanoAssert(isLInsOp1());
}
void LIns::initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2) {
initSharedFields(opcode);
toLInsOp2()->oprnd_1 = oprnd1;
toLInsOp2()->oprnd_2 = oprnd2;
NanoAssert(isLInsOp2());
}
void LIns::initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3) {
initSharedFields(opcode);
toLInsOp3()->oprnd_1 = oprnd1;
toLInsOp3()->oprnd_2 = oprnd2;
toLInsOp3()->oprnd_3 = oprnd3;
NanoAssert(isLInsOp3());
}
void LIns::initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet, LoadQual loadQual) {
initSharedFields(opcode);
toLInsLd()->oprnd_1 = val;
NanoAssert(d == int16_t(d));
toLInsLd()->disp = int16_t(d);
toLInsLd()->miniAccSetVal = compressAccSet(accSet).val;
toLInsLd()->loadQual = loadQual;
NanoAssert(isLInsLd());
}
void LIns::initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet) {
initSharedFields(opcode);
toLInsSt()->oprnd_1 = val;
toLInsSt()->oprnd_2 = base;
NanoAssert(d == int16_t(d));
toLInsSt()->disp = int16_t(d);
toLInsSt()->miniAccSetVal = compressAccSet(accSet).val;
NanoAssert(isLInsSt());
}
void LIns::initLInsSk(LIns* prevLIns) {
initSharedFields(LIR_skip);
toLInsSk()->prevLIns = prevLIns;
NanoAssert(isLInsSk());
}
void LIns::initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci) {
initSharedFields(opcode);
toLInsC()->args = args;
toLInsC()->ci = ci;
NanoAssert(isLInsC());
}
void LIns::initLInsP(int32_t arg, int32_t kind) {
initSharedFields(LIR_paramp);
NanoAssert(isU8(arg) && isU8(kind));
toLInsP()->arg = arg;
toLInsP()->kind = kind;
NanoAssert(isLInsP());
}
void LIns::initLInsI(LOpcode opcode, int32_t immI) {
initSharedFields(opcode);
toLInsI()->immI = immI;
NanoAssert(isLInsI());
}
void LIns::initLInsQorD(LOpcode opcode, uint64_t immQorD) {
initSharedFields(opcode);
toLInsQorD()->immQorDlo = int32_t(immQorD);
toLInsQorD()->immQorDhi = int32_t(immQorD >> 32);
NanoAssert(isLInsQorD());
}
void LIns::initLInsJtbl(LIns* index, uint32_t size, LIns** table) {
initSharedFields(LIR_jtbl);
toLInsJtbl()->oprnd_1 = index;
toLInsJtbl()->table = table;
toLInsJtbl()->size = size;
NanoAssert(isLInsJtbl());
}
LIns* LIns::oprnd1() const {
NanoAssert(isLInsOp1() || isLInsOp2() || isLInsOp3() || isLInsLd() || isLInsSt() || isLInsJtbl());
return toLInsOp2()->oprnd_1;
}
LIns* LIns::oprnd2() const {
NanoAssert(isLInsOp2() || isLInsOp3() || isLInsSt());
return toLInsOp2()->oprnd_2;
}
LIns* LIns::oprnd3() const {
NanoAssert(isLInsOp3());
return toLInsOp3()->oprnd_3;
}
LIns* LIns::getTarget() const {
NanoAssert(isBranch() && !isop(LIR_jtbl));
if (isJov())
return oprnd3();
else
return oprnd2();
}
void LIns::setTarget(LIns* label) {
NanoAssert(label && label->isop(LIR_label));
NanoAssert(isBranch() && !isop(LIR_jtbl));
if (isJov())
toLInsOp3()->oprnd_3 = label;
else
toLInsOp2()->oprnd_2 = label;
}
LIns* LIns::getTarget(uint32_t index) const {
NanoAssert(isop(LIR_jtbl));
NanoAssert(index < toLInsJtbl()->size);
return toLInsJtbl()->table[index];
}
void LIns::setTarget(uint32_t index, LIns* label) const {
NanoAssert(label && label->isop(LIR_label));
NanoAssert(isop(LIR_jtbl));
NanoAssert(index < toLInsJtbl()->size);
toLInsJtbl()->table[index] = label;
}
GuardRecord *LIns::record() const {
NanoAssert(isGuard());
switch (opcode()) {
case LIR_x:
case LIR_xt:
case LIR_xf:
case LIR_xtbl:
case LIR_xbarrier:
return (GuardRecord*)oprnd2();
case LIR_addxovi:
case LIR_subxovi:
case LIR_mulxovi:
return (GuardRecord*)oprnd3();
default:
NanoAssert(0);
return NULL;
}
}
LoadQual LIns::loadQual() const {
NanoAssert(isLInsLd());
return (LoadQual)toLInsLd()->loadQual;
}
int32_t LIns::disp() const {
if (isLInsSt()) {
return toLInsSt()->disp;
} else {
NanoAssert(isLInsLd());
return toLInsLd()->disp;
}
}
MiniAccSet LIns::miniAccSet() const {
MiniAccSet miniAccSet;
if (isLInsSt()) {
miniAccSet.val = toLInsSt()->miniAccSetVal;
} else {
NanoAssert(isLInsLd());
miniAccSet.val = toLInsLd()->miniAccSetVal;
}
return miniAccSet;
}
AccSet LIns::accSet() const {
return decompressMiniAccSet(miniAccSet());
}
LIns* LIns::prevLIns() const {
NanoAssert(isLInsSk());
return toLInsSk()->prevLIns;
}
inline uint8_t LIns::paramArg() const { NanoAssert(isop(LIR_paramp)); return toLInsP()->arg; }
inline uint8_t LIns::paramKind() const { NanoAssert(isop(LIR_paramp)); return toLInsP()->kind; }
inline int32_t LIns::immI() const { NanoAssert(isImmI()); return toLInsI()->immI; }
#ifdef NANOJIT_64BIT
inline int32_t LIns::immQlo() const { NanoAssert(isImmQ()); return toLInsQorD()->immQorDlo; }
uint64_t LIns::immQ() const {
NanoAssert(isImmQ());
return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
}
#endif
inline int32_t LIns::immDlo() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDlo; }
inline int32_t LIns::immDhi() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDhi; }
double LIns::immD() const {
NanoAssert(isImmD());
union {
double f;
uint64_t q;
} u;
u.q = immDasQ();
return u.f;
}
uint64_t LIns::immDasQ() const {
NanoAssert(isImmD());
return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
}
int32_t LIns::size() const {
NanoAssert(isop(LIR_allocp));
return toLInsI()->immI << 2;
}
void LIns::setSize(int32_t nbytes) {
NanoAssert(isop(LIR_allocp));
NanoAssert(nbytes > 0);
toLInsI()->immI = (nbytes+3)>>2; // # of required 32bit words
}
// Index args in reverse order, i.e. arg(0) returns the rightmost arg.
// Nb: this must be kept in sync with insCall().
LIns* LIns::arg(uint32_t i) const
{
NanoAssert(isCall());
NanoAssert(i < callInfo()->count_args());
return toLInsC()->args[i]; // args[] is in right-to-left order as well
}
uint32_t LIns::argc() const {
return callInfo()->count_args();
}
LIns* LIns::callArgN(uint32_t n) const
{
return arg(argc()-n-1);
}
const CallInfo* LIns::callInfo() const
{
NanoAssert(isCall());
return toLInsC()->ci;
}
uint32_t LIns::getTableSize() const
{
NanoAssert(isLInsJtbl());
return toLInsJtbl()->size;
}
class LirWriter
{
public:
LirWriter *out;
LirWriter(LirWriter* out)
: out(out) {}
virtual ~LirWriter() {}
virtual LIns* ins0(LOpcode v) {
return out->ins0(v);
}
virtual LIns* ins1(LOpcode v, LIns* a) {
return out->ins1(v, a);
}
virtual LIns* ins2(LOpcode v, LIns* a, LIns* b) {
return out->ins2(v, a, b);
}
virtual LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c) {
return out->ins3(v, a, b, c);
}
virtual LIns* insGuard(LOpcode v, LIns *c, GuardRecord *gr) {
return out->insGuard(v, c, gr);
}
virtual LIns* insGuardXov(LOpcode v, LIns *a, LIns* b, GuardRecord *gr) {
return out->insGuardXov(v, a, b, gr);
}
virtual LIns* insBranch(LOpcode v, LIns* condition, LIns* to) {
return out->insBranch(v, condition, to);
}
virtual LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to) {
return out->insBranchJov(v, a, b, to);
}
// arg: 0=first, 1=second, ...
// kind: 0=arg 1=saved-reg
virtual LIns* insParam(int32_t arg, int32_t kind) {
return out->insParam(arg, kind);
}
virtual LIns* insImmI(int32_t imm) {
return out->insImmI(imm);
}
#ifdef NANOJIT_64BIT
virtual LIns* insImmQ(uint64_t imm) {
return out->insImmQ(imm);
}
#endif
virtual LIns* insImmD(double d) {
return out->insImmD(d);
}
virtual LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual) {
return out->insLoad(op, base, d, accSet, loadQual);
}
virtual LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet) {
return out->insStore(op, value, base, d, accSet);
}
// args[] is in reverse order, ie. args[0] holds the rightmost arg.
virtual LIns* insCall(const CallInfo *call, LIns* args[]) {
return out->insCall(call, args);
}
virtual LIns* insAlloc(int32_t size) {
NanoAssert(size != 0);
return out->insAlloc(size);
}
virtual LIns* insJtbl(LIns* index, uint32_t size) {
return out->insJtbl(index, size);
}
virtual LIns* insComment(const char* str) {
return out->insComment(str);
}
// convenience functions
// Inserts a conditional to execute and branches to execute if
// the condition is true and false respectively.
LIns* insChoose(LIns* cond, LIns* iftrue, LIns* iffalse, bool use_cmov);
// Inserts an integer comparison to 0
LIns* insEqI_0(LIns* oprnd1) {
return ins2ImmI(LIR_eqi, oprnd1, 0);
}
// Inserts a pointer comparison to 0
LIns* insEqP_0(LIns* oprnd1) {
return ins2(LIR_eqp, oprnd1, insImmWord(0));
}
// Inserts a binary operation where the second operand is an
// integer immediate.
LIns* ins2ImmI(LOpcode v, LIns* oprnd1, int32_t imm) {
return ins2(v, oprnd1, insImmI(imm));
}
LIns* insImmP(const void *ptr) {
#ifdef NANOJIT_64BIT
return insImmQ((uint64_t)ptr);
#else
return insImmI((int32_t)ptr);
#endif
}
LIns* insImmWord(intptr_t value) {
#ifdef NANOJIT_64BIT
return insImmQ(value);
#else
return insImmI(value);
#endif
}
// Sign-extend integers to native integers. On 32-bit this is a no-op.
LIns* insI2P(LIns* intIns) {
#ifdef NANOJIT_64BIT
return ins1(LIR_i2q, intIns);
#else
return intIns;
#endif
}
// Zero-extend integers to native integers. On 32-bit this is a no-op.
LIns* insUI2P(LIns* uintIns) {
#ifdef NANOJIT_64BIT
return ins1(LIR_ui2uq, uintIns);
#else
return uintIns;
#endif
}
// Do a load with LoadQual==LOAD_NORMAL.
LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet) {
return insLoad(op, base, d, accSet, LOAD_NORMAL);
}
// Chooses LIR_sti, LIR_stq or LIR_std according to the type of 'value'.
LIns* insStore(LIns* value, LIns* base, int32_t d, AccSet accSet);
};
#ifdef NJ_VERBOSE
extern const char* lirNames[];
// Maps address ranges to meaningful names.
class AddrNameMap
{
Allocator& allocator;
class Entry
{
public:
Entry(int) : name(0), size(0), align(0) {}
Entry(char *n, size_t s, size_t a) : name(n), size(s), align(a) {}
char* name;
size_t size:29, align:3;
};
TreeMap<const void*, Entry*> names; // maps code regions to names
public:
AddrNameMap(Allocator& allocator);
void addAddrRange(const void *p, size_t size, size_t align, const char *name);
void lookupAddr(void *p, char*& name, int32_t& offset);
};
// Maps LIR instructions to meaningful names.
class LirNameMap
{
private:
Allocator& alloc;
// A small string-wrapper class, required because we need '==' to
// compare string contents, not string pointers, when strings are used
// as keys in CountMap.
struct Str {
Allocator& alloc;
char* s;
Str(Allocator& alloc_, const char* s_) : alloc(alloc_) {
s = new (alloc) char[1+strlen(s_)];
strcpy(s, s_);
}
bool operator==(const Str& str) const {
return (0 == strcmp(this->s, str.s));
}
};
// Similar to 'struct Str' -- we need to hash the string's contents,
// not its pointer.
template<class K> struct StrHash {
static size_t hash(const Str &k) {
// (const void*) cast is required by ARM RVCT 2.2
return murmurhash((const void*)k.s, strlen(k.s));
}
};
template <class Key, class H=DefaultHash<Key> >
class CountMap: public HashMap<Key, int, H> {
public:
CountMap(Allocator& alloc) : HashMap<Key, int, H>(alloc, 128) {}
int add(Key k) {
int c = 1;
if (this->containsKey(k)) {
c = 1+this->get(k);
}
this->put(k,c);
return c;
}
};
CountMap<int> lircounts;
CountMap<const CallInfo *> funccounts;
CountMap<Str, StrHash<Str> > namecounts;
void addNameWithSuffix(LIns* i, const char *s, int suffix, bool ignoreOneSuffix);
class Entry
{
public:
Entry(int) : name(0) {}
Entry(char* n) : name(n) {}
char* name;
};
HashMap<LIns*, Entry*> names;
public:
LirNameMap(Allocator& alloc)
: alloc(alloc),
lircounts(alloc),
funccounts(alloc),
namecounts(alloc),
names(alloc)
{}
void addName(LIns* ins, const char *s); // gives 'ins' a special name
const char* createName(LIns* ins); // gives 'ins' a generic name
const char* lookupName(LIns* ins);
};
// We use big buffers for cases where we need to fit a whole instruction,
// and smaller buffers for all the others. These should easily be long
// enough, but for safety the formatXyz() functions check and won't exceed
// those limits.
class InsBuf {
public:
static const size_t len = 1000;
char buf[len];
};
class RefBuf {
public:
static const size_t len = 200;
char buf[len];
};
class LInsPrinter
{
private:
Allocator& alloc;
const int EMB_NUM_USED_ACCS;
char *formatImmI(RefBuf* buf, int32_t c);
#ifdef NANOJIT_64BIT
char *formatImmQ(RefBuf* buf, uint64_t c);
#endif
char *formatImmD(RefBuf* buf, double c);
void formatGuard(InsBuf* buf, LIns* ins); // defined by the embedder
void formatGuardXov(InsBuf* buf, LIns* ins); // defined by the embedder
public:
static const char* accNames[]; // defined by the embedder
LInsPrinter(Allocator& alloc, int embNumUsedAccs)
: alloc(alloc), EMB_NUM_USED_ACCS(embNumUsedAccs)
{
addrNameMap = new (alloc) AddrNameMap(alloc);
lirNameMap = new (alloc) LirNameMap(alloc);
}
char *formatAddr(RefBuf* buf, void* p);
char *formatRef(RefBuf* buf, LIns* ref, bool showImmValue = true);
char *formatIns(InsBuf* buf, LIns* ins);
char *formatAccSet(RefBuf* buf, AccSet accSet);
AddrNameMap* addrNameMap;
LirNameMap* lirNameMap;
};
class VerboseWriter : public LirWriter
{
InsList code;
LInsPrinter* printer;
LogControl* logc;
const char* const prefix;
bool const always_flush;
public:
VerboseWriter(Allocator& alloc, LirWriter *out, LInsPrinter* printer, LogControl* logc,
const char* prefix = "", bool always_flush = false)
: LirWriter(out), code(alloc), printer(printer), logc(logc), prefix(prefix), always_flush(always_flush)
{}
LIns* add(LIns* i) {
if (i) {
code.add(i);
if (always_flush)
flush();
}
return i;
}
LIns* add_flush(LIns* i) {
if ((i = add(i)) != 0)
flush();
return i;
}
void flush()
{
if (!code.isEmpty()) {
InsBuf b;
for (Seq<LIns*>* p = code.get(); p != NULL; p = p->tail)
logc->printf("%s %s\n", prefix, printer->formatIns(&b, p->head));
code.clear();
}
}
LIns* insGuard(LOpcode op, LIns* cond, GuardRecord *gr) {
return add_flush(out->insGuard(op,cond,gr));
}
LIns* insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr) {
return add(out->insGuardXov(op,a,b,gr));
}
LIns* insBranch(LOpcode v, LIns* condition, LIns* to) {
return add_flush(out->insBranch(v, condition, to));
}
LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to) {
return add(out->insBranchJov(v, a, b, to));
}
LIns* insJtbl(LIns* index, uint32_t size) {
return add_flush(out->insJtbl(index, size));
}
LIns* ins0(LOpcode v) {
if (v == LIR_label || v == LIR_start) {
flush();
}
return add(out->ins0(v));
}
LIns* ins1(LOpcode v, LIns* a) {
return isRetOpcode(v) ? add_flush(out->ins1(v, a)) : add(out->ins1(v, a));
}
LIns* ins2(LOpcode v, LIns* a, LIns* b) {
return add(out->ins2(v, a, b));
}
LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c) {
return add(out->ins3(v, a, b, c));
}
LIns* insCall(const CallInfo *call, LIns* args[]) {
return add_flush(out->insCall(call, args));
}
LIns* insParam(int32_t i, int32_t kind) {
return add(out->insParam(i, kind));
}
LIns* insLoad(LOpcode v, LIns* base, int32_t disp, AccSet accSet, LoadQual loadQual) {
return add(out->insLoad(v, base, disp, accSet, loadQual));
}
LIns* insStore(LOpcode op, LIns* v, LIns* b, int32_t d, AccSet accSet) {
return add_flush(out->insStore(op, v, b, d, accSet));
}
LIns* insAlloc(int32_t size) {
return add(out->insAlloc(size));
}
LIns* insImmI(int32_t imm) {
return add(out->insImmI(imm));
}
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t imm) {
return add(out->insImmQ(imm));
}
#endif
LIns* insImmD(double d) {
return add(out->insImmD(d));
}
LIns* insComment(const char* str) {
return add_flush(out->insComment(str));
}
};
#endif
class ExprFilter: public LirWriter
{
public:
ExprFilter(LirWriter *out) : LirWriter(out) {}
LIns* ins1(LOpcode v, LIns* a);
LIns* ins2(LOpcode v, LIns* a, LIns* b);
LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
LIns* insGuard(LOpcode, LIns* cond, GuardRecord *);
LIns* insGuardXov(LOpcode, LIns* a, LIns* b, GuardRecord *);
LIns* insBranch(LOpcode, LIns* cond, LIns* target);
LIns* insBranchJov(LOpcode, LIns* a, LIns* b, LIns* target);
LIns* insLoad(LOpcode op, LIns* base, int32_t off, AccSet accSet, LoadQual loadQual);
private:
LIns* simplifyOverflowArith(LOpcode op, LIns** opnd1, LIns** opnd2);
};
class CseFilter: public LirWriter
{
enum NLKind {
// We divide instruction kinds into groups. LIns0 isn't present
// because we don't need to record any 0-ary instructions. Loads
// aren't here, they're handled separately.
NLImmISmall = 0,
NLImmILarge = 1,
NLImmQ = 2, // only occurs on 64-bit platforms
NLImmD = 3,
NL1 = 4,
NL2 = 5,
NL3 = 6,
NLCall = 7,
NLFirst = 0,
NLLast = 7,
// Need a value after "last" to outsmart compilers that insist last+1 is impossible.
NLInvalid = 8
};
#define nextNLKind(kind) NLKind(kind+1)
// There is one table for each NLKind. This lets us size the lists
// appropriately (some instruction kinds are more common than others).
// It also lets us have NLKind-specific find/add/grow functions, which
// are faster than generic versions.
//
// Nb: m_listNL and m_capNL sizes must be a power of 2.
// Don't start m_capNL too small, or we'll waste time growing and rehashing.
// Don't start m_capNL too large, will waste memory.
//
LIns** m_listNL[NLLast + 1];
uint32_t m_capNL[ NLLast + 1];
uint32_t m_usedNL[NLLast + 1];
typedef uint32_t (CseFilter::*find_t)(LIns*);
find_t m_findNL[NLLast + 1];
// Similarly, for loads, there is one table for each CseAcc. A CseAcc
// is like a normal access region, but there are two extra possible
// values: CSE_ACC_CONST, which is where we put all CONST-qualified
// loads, and CSE_ACC_MULTIPLE, where we put all multi-region loads.
// All remaining loads are single-region and go in the table entry for
// their region.
//
// This arrangement makes the removal of invalidated loads fast -- we
// can invalidate all loads from a single region by clearing that
// region's table.
//
typedef uint8_t CseAcc; // same type as MiniAccSet
static const uint8_t CSE_NUM_ACCS = NUM_ACCS + 2;
// These values would be 'static const' except they are defined in
// terms of EMB_NUM_USED_ACCS which is itself not 'static const'
// because it's passed in by the embedding.
const uint8_t EMB_NUM_USED_ACCS; // number of access regions used by the embedding
const uint8_t CSE_NUM_USED_ACCS; // EMB_NUM_USED_ACCS + 2
const CseAcc CSE_ACC_CONST; // EMB_NUM_USED_ACCS + 0
const CseAcc CSE_ACC_MULTIPLE; // EMB_NUM_USED_ACCS + 1
// We will only use CSE_NUM_USED_ACCS of these entries, ie. the
// number of lists allocated depends on the number of access regions
// in use by the embedding.
LIns** m_listL[CSE_NUM_ACCS];
uint32_t m_capL[ CSE_NUM_ACCS];
uint32_t m_usedL[CSE_NUM_ACCS];
AccSet storesSinceLastLoad; // regions stored to since the last load
Allocator& alloc;
// After a conditional guard such as "xf cmp", we know that 'cmp' must
// be true, else we would have side-exited. So if we see 'cmp' again
// we can treat it like a constant. This table records such
// comparisons.
HashMap <LIns*, bool> knownCmpValues;
// If true, we will not add new instructions to the CSE tables, but we
// will continue to CSE instructions that match existing table
// entries. Load instructions will still be removed if aliasing
// stores are encountered.
bool suspended;
CseAcc miniAccSetToCseAcc(MiniAccSet miniAccSet, LoadQual loadQual) {
NanoAssert(miniAccSet.val < NUM_ACCS || miniAccSet.val == MINI_ACCSET_MULTIPLE.val);
return (loadQual == LOAD_CONST) ? CSE_ACC_CONST :
(miniAccSet.val == MINI_ACCSET_MULTIPLE.val) ? CSE_ACC_MULTIPLE :
miniAccSet.val;
}
static uint32_t hash8(uint32_t hash, const uint8_t data);
static uint32_t hash32(uint32_t hash, const uint32_t data);
static uint32_t hashptr(uint32_t hash, const void* data);
static uint32_t hashfinish(uint32_t hash);
static uint32_t hashImmI(int32_t);
static uint32_t hashImmQorD(uint64_t); // not NANOJIT_64BIT-only -- used by findImmD()
static uint32_t hash1(LOpcode op, LIns*);
static uint32_t hash2(LOpcode op, LIns*, LIns*);
static uint32_t hash3(LOpcode op, LIns*, LIns*, LIns*);
static uint32_t hashLoad(LOpcode op, LIns*, int32_t);
static uint32_t hashCall(const CallInfo *call, uint32_t argc, LIns* args[]);
// These versions are used before an LIns has been created.
LIns* findImmISmall(int32_t a, uint32_t &k);
LIns* findImmILarge(int32_t a, uint32_t &k);
#ifdef NANOJIT_64BIT
LIns* findImmQ(uint64_t a, uint32_t &k);
#endif
LIns* findImmD(uint64_t d, uint32_t &k);
LIns* find1(LOpcode v, LIns* a, uint32_t &k);
LIns* find2(LOpcode v, LIns* a, LIns* b, uint32_t &k);
LIns* find3(LOpcode v, LIns* a, LIns* b, LIns* c, uint32_t &k);
LIns* findLoad(LOpcode v, LIns* a, int32_t b, MiniAccSet miniAccSet, LoadQual loadQual,
uint32_t &k);
LIns* findCall(const CallInfo *call, uint32_t argc, LIns* args[], uint32_t &k);
// These versions are used after an LIns has been created; they are
// used for rehashing after growing. They just call onto the
// multi-arg versions above.
uint32_t findImmISmall(LIns* ins);
uint32_t findImmILarge(LIns* ins);
#ifdef NANOJIT_64BIT
uint32_t findImmQ(LIns* ins);
#endif
uint32_t findImmD(LIns* ins);
uint32_t find1(LIns* ins);
uint32_t find2(LIns* ins);
uint32_t find3(LIns* ins);
uint32_t findCall(LIns* ins);
uint32_t findLoad(LIns* ins);
// These return false if they failed to grow due to OOM.
bool growNL(NLKind kind);
bool growL(CseAcc cseAcc);
void addNLImmISmall(LIns* ins, uint32_t k);
// 'k' is the index found by findXYZ().
void addNL(NLKind kind, LIns* ins, uint32_t k);
void addL(LIns* ins, uint32_t k);
void clearAll(); // clears all tables
void clearNL(NLKind); // clears one non-load table
void clearL(CseAcc); // clears one load table
public:
CseFilter(LirWriter *out, uint8_t embNumUsedAccs, Allocator&);
// CseFilter does some largish fallible allocations at start-up. If
// they fail, the constructor sets this field to 'true'. It should be
// checked after creation, and if set the CseFilter cannot be used.
// (But the check can be skipped if allocChunk() always succeeds.)
//
// FIXME: This fallibility is a sop to TraceMonkey's implementation of
// infallible malloc -- by avoiding some largish infallible
// allocations, it reduces the size of the reserve space needed.
// Bug 624590 is open to fix this.
bool initOOM;
LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t q);
#endif
LIns* insImmD(double d);
LIns* ins0(LOpcode v);
LIns* ins1(LOpcode v, LIns*);
LIns* ins2(LOpcode v, LIns*, LIns*);
LIns* ins3(LOpcode v, LIns*, LIns*, LIns*);
LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual);
LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet);
LIns* insCall(const CallInfo *call, LIns* args[]);
LIns* insGuard(LOpcode op, LIns* cond, GuardRecord *gr);
LIns* insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr);
// These functions provide control over CSE in the face of control
// flow. A suspend()/resume() pair may be put around a synthetic
// control flow diamond, preventing the inserted label from resetting
// the CSE state. A suspend() call must be dominated by a resume()
// call, else incorrect code could result.
void suspend() { suspended = true; }
void resume() { suspended = false; }
};
class LirBuffer
{
public:
LirBuffer(Allocator& alloc);
void clear();
uintptr_t makeRoom(size_t szB); // make room for an instruction
debug_only (void validate() const;)
verbose_only(LInsPrinter* printer;)
int32_t insCount();
// stats
struct
{
uint32_t lir; // # instructions
}
_stats;
AbiKind abi;
LIns *state, *param1, *sp, *rp;
LIns* savedRegs[NumSavedRegs+1]; // Allocate an extra element in case NumSavedRegs == 0
/** Each chunk is just a raw area of LIns instances, with no header
and no more than 8-byte alignment. The chunk size is somewhat arbitrary. */
static const size_t CHUNK_SZB = 8000;
protected:
friend class LirBufWriter;
/** Get CHUNK_SZB more memory for LIR instructions. */
void chunkAlloc();
void moveToNewChunk(uintptr_t addrOfLastLInsOnCurrentChunk);
Allocator& _allocator;
uintptr_t _unused; // next unused instruction slot in the current LIR chunk
uintptr_t _limit; // one past the last usable byte of the current LIR chunk
};
class LirBufWriter : public LirWriter
{
LirBuffer* _buf; // underlying buffer housing the instructions
const Config& _config;
public:
LirBufWriter(LirBuffer* buf, const Config& config)
: LirWriter(0), _buf(buf), _config(config) {
}
// LirWriter interface
LIns* insLoad(LOpcode op, LIns* base, int32_t disp, AccSet accSet, LoadQual loadQual);
LIns* insStore(LOpcode op, LIns* o1, LIns* o2, int32_t disp, AccSet accSet);
LIns* ins0(LOpcode op);
LIns* ins1(LOpcode op, LIns* o1);
LIns* ins2(LOpcode op, LIns* o1, LIns* o2);
LIns* ins3(LOpcode op, LIns* o1, LIns* o2, LIns* o3);
LIns* insParam(int32_t i, int32_t kind);
LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t imm);
#endif
LIns* insImmD(double d);
LIns* insCall(const CallInfo *call, LIns* args[]);
LIns* insGuard(LOpcode op, LIns* cond, GuardRecord *gr);
LIns* insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr);
LIns* insBranch(LOpcode v, LIns* condition, LIns* to);
LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to);
LIns* insAlloc(int32_t size);
LIns* insJtbl(LIns* index, uint32_t size);
LIns* insComment(const char* str);
};
class LirFilter
{
public:
LirFilter *in;
LirFilter(LirFilter *in) : in(in) {}
virtual ~LirFilter(){}
// It's crucial that once this reaches the LIR_start at the beginning
// of the buffer, that it just keeps returning that LIR_start LIns on
// any subsequent calls.
virtual LIns* read() {
return in->read();
}
virtual LIns* finalIns() {
return in->finalIns();
}
};
// concrete
class LirReader : public LirFilter
{
LIns* _ins; // next instruction to be read; invariant: is never a skip
LIns* _finalIns; // final instruction in the stream; ie. the first one to be read
public:
LirReader(LIns* ins) : LirFilter(0), _ins(ins), _finalIns(ins)
{
// The last instruction for a fragment shouldn't be a skip.
// (Actually, if the last *inserted* instruction exactly fills up
// a chunk, a new chunk will be created, and thus the last *written*
// instruction will be a skip -- the one needed for the
// cross-chunk link. But the last *inserted* instruction is what
// is recorded and used to initialise each LirReader, and that is
// what is seen here, and therefore this assertion holds.)
NanoAssert(ins && !ins->isop(LIR_skip));
}
virtual ~LirReader() {}
// Returns next instruction and advances to the prior instruction.
// Invariant: never returns a skip.
LIns* read();
LIns* finalIns() {
return _finalIns;
}
};
verbose_only(void live(LirFilter* in, Allocator& alloc, Fragment* frag, LogControl*);)
// WARNING: StackFilter assumes that all stack entries are eight bytes.
// Some of its optimisations aren't valid if that isn't true. See
// StackFilter::read() for more details.
class StackFilter: public LirFilter
{
LIns* sp;
BitSet stk;
int top;
int getTop(LIns* br);
public:
StackFilter(LirFilter *in, Allocator& alloc, LIns* sp);
LIns* read();
};
// This type is used to perform a simple interval analysis of 32-bit
// add/sub/mul. It lets us avoid overflow checks in some cases.
struct Interval
{
// The bounds are 64-bit integers so that any overflow from a 32-bit
// operation can be safely detected.
//
// If 'hasOverflowed' is false, 'lo' and 'hi' must be in the range
// I32_MIN..I32_MAX. If 'hasOverflowed' is true, 'lo' and 'hi' should
// not be trusted (and in debug builds we set them both to a special
// value UNTRUSTWORTHY that is outside the I32_MIN..I32_MAX range to
// facilitate sanity checking).
//
int64_t lo;
int64_t hi;
bool hasOverflowed;
static const int64_t I32_MIN = int64_t(int32_t(0x80000000));
static const int64_t I32_MAX = int64_t(int32_t(0x7fffffff));
#ifdef DEBUG
static const int64_t UNTRUSTWORTHY = int64_t(0xdeafdeadbeeffeedLL);
bool isSane() {
return (hasOverflowed && lo == UNTRUSTWORTHY && hi == UNTRUSTWORTHY) ||
(!hasOverflowed && lo <= hi && I32_MIN <= lo && hi <= I32_MAX);
}
#endif
Interval(int64_t lo_, int64_t hi_) {
if (lo_ < I32_MIN || I32_MAX < hi_) {
hasOverflowed = true;
#ifdef DEBUG
lo = UNTRUSTWORTHY;
hi = UNTRUSTWORTHY;
#endif
} else {
hasOverflowed = false;
lo = lo_;
hi = hi_;
}
NanoAssert(isSane());
}
static Interval OverflowInterval() {
Interval interval(0, 0);
#ifdef DEBUG
interval.lo = UNTRUSTWORTHY;
interval.hi = UNTRUSTWORTHY;
#endif
interval.hasOverflowed = true;
return interval;
}
static Interval of(LIns* ins, int32_t lim);
static Interval add(Interval x, Interval y);
static Interval sub(Interval x, Interval y);
static Interval mul(Interval x, Interval y);
bool canBeZero() {
NanoAssert(isSane());
return hasOverflowed || (lo <= 0 && 0 <= hi);
}
bool canBeNegative() {
NanoAssert(isSane());
return hasOverflowed || (lo < 0);
}
};
#if NJ_SOFTFLOAT_SUPPORTED
struct SoftFloatOps
{
const CallInfo* opmap[LIR_sentinel];
SoftFloatOps();
};
extern const SoftFloatOps softFloatOps;
// Replaces fpu ops with function calls, for platforms lacking float
// hardware (eg. some ARM machines).
class SoftFloatFilter: public LirWriter
{
public:
static const CallInfo* opmap[LIR_sentinel];
SoftFloatFilter(LirWriter *out);
LIns *split(LIns *a);
LIns *split(const CallInfo *call, LIns* args[]);
LIns *callD1(const CallInfo *call, LIns *a);
LIns *callD2(const CallInfo *call, LIns *a, LIns *b);
LIns *callI1(const CallInfo *call, LIns *a);
LIns *cmpD(const CallInfo *call, LIns *a, LIns *b);
LIns *ins1(LOpcode op, LIns *a);
LIns *ins2(LOpcode op, LIns *a, LIns *b);
LIns *insCall(const CallInfo *ci, LIns* args[]);
};
#endif
#ifdef DEBUG
// This class does thorough checking of LIR. It checks *implicit* LIR
// instructions, ie. LIR instructions specified via arguments -- to
// methods like insLoad() -- that have not yet been converted into
// *explicit* LIns objects in a LirBuffer. The reason for this is that if
// we wait until the LIR instructions are explicit, they will have gone
// through the entire writer pipeline and been optimised. By checking
// implicit LIR instructions we can check the LIR code at the start of the
// writer pipeline, exactly as it is generated by the compiler front-end.
//
// A general note about the errors produced by this class: for
// TraceMonkey, they won't include special names for instructions that
// have them unless TMFLAGS is specified.
class ValidateWriter : public LirWriter
{
private:
LInsPrinter* printer;
const char* whereInPipeline;
const char* type2string(LTy type);
void typeCheckArgs(LOpcode op, int nArgs, LTy formals[], LIns* args[]);
void errorStructureShouldBe(LOpcode op, const char* argDesc, int argN, LIns* arg,
const char* shouldBeDesc);
void errorAccSet(const char* what, AccSet accSet, const char* shouldDesc);
void errorLoadQual(const char* what, LoadQual loadQual);
void checkLInsHasOpcode(LOpcode op, int argN, LIns* ins, LOpcode op2);
void checkLInsIsACondOrConst(LOpcode op, int argN, LIns* ins);
void checkLInsIsNull(LOpcode op, int argN, LIns* ins);
void checkAccSet(LOpcode op, LIns* base, int32_t disp, AccSet accSet); // defined by the embedder
// These can be set by the embedder and used in checkAccSet().
void** checkAccSetExtras;
public:
ValidateWriter(LirWriter* out, LInsPrinter* printer, const char* where);
void setCheckAccSetExtras(void** extras) { checkAccSetExtras = extras; }
LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual);
LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet);
LIns* ins0(LOpcode v);
LIns* ins1(LOpcode v, LIns* a);
LIns* ins2(LOpcode v, LIns* a, LIns* b);
LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
LIns* insParam(int32_t arg, int32_t kind);
LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t imm);
#endif
LIns* insImmD(double d);
LIns* insCall(const CallInfo *call, LIns* args[]);
LIns* insGuard(LOpcode v, LIns *c, GuardRecord *gr);
LIns* insGuardXov(LOpcode v, LIns* a, LIns* b, GuardRecord* gr);
LIns* insBranch(LOpcode v, LIns* condition, LIns* to);
LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to);
LIns* insAlloc(int32_t size);
LIns* insJtbl(LIns* index, uint32_t size);
};
// This just checks things that aren't possible to check in
// ValidateWriter, eg. whether all branch targets are set and are labels.
class ValidateReader: public LirFilter {
public:
ValidateReader(LirFilter* in);
LIns* read();
};
#endif
#ifdef NJ_VERBOSE
/* A listing filter for LIR, going through backwards. It merely
passes its input to its output, but notes it down too. When
finish() is called, prints out what went through. Is intended to be
used to print arbitrary intermediate transformation stages of
LIR. */
class ReverseLister : public LirFilter
{
Allocator& _alloc;
LInsPrinter* _printer;
const char* _title;
StringList _strs;
LogControl* _logc;
LIns* _prevIns;
public:
ReverseLister(LirFilter* in, Allocator& alloc,
LInsPrinter* printer, LogControl* logc, const char* title)
: LirFilter(in)
, _alloc(alloc)
, _printer(printer)
, _title(title)
, _strs(alloc)
, _logc(logc)
, _prevIns(NULL)
{ }
void finish();
LIns* read();
};
#endif
}
#endif // __nanojit_LIR__
|