This file is indexed.

/usr/include/linbox/algorithms/block-lanczos.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* block-lanczos.h
 * Copyright (C) 2002 Bradford Hovinen
 *
 * Written by Bradford Hovinen <bghovinen@math.waterloo.ca>
 *
 * --------------------------------------------
 *
 * Licensed under the GNU Lesser General Public License. See COPYING for
 * details.
 *
 * Class definitions for block Lanczos iteration
 */

#ifndef __BLOCK_LANCZOS_H
#define __BLOCK_LANCZOS_H

#include "linbox/linbox-config.h"

#include <vector>

#include "linbox/field/archetype.h"
#include "linbox/vector/vector-domain.h"
#include "linbox/blackbox/archetype.h"
#include "linbox/blackbox/dense.h"
#include "linbox/matrix/dense-submatrix.h"
#include "linbox/solutions/methods.h"

// I'm putting everything inside the LinBox namespace so that I can drop all of
// this in to LinBox easily at a later date, without any messy porting.

// Fix for Solaris wierdness
#undef _S
#undef _M
#undef _N

namespace LinBox 
{

/** @brief Block Lanczos iteration
 *
 * This is a blocked version of the iteration given in @ref{LanczosSolver}. The
 * essential difference is that, rather than applying the black box $A$ to a
 * single vector $v$ during each iteration, the block box $A$ is applied to an
 * $n\times N$ matrix $V$ or, equivalently, to $N$ vectors
 * $v_1, \ldots, v_N$ Scalars in the original iteration become $N\times N$
 * matrices in the blocked version. The resulting iteration is a natural
 * extension of the basic theory of the original Lanczos iteration,
 * c.f. (Montgomery 1995). This has the advantage of more flexible
 * parallelization, and does not break down as often when used over small
 * fields.
 *
 * Currently, only dense vectors are supported for this iteration, and it is
 * unlikely any other vector archetypes will be supported in the future.
 */
template <class Field, class Matrix = DenseMatrixBase<typename Field::Element> >
class BlockLanczosSolver
{
    public:

	typedef typename Field::Element Element;

	/** Constructor
	 * @param F Field over which to operate
	 * @param traits @ref{SolverTraits} structure describing user
	 *               options for the solver 
	 */
	BlockLanczosSolver (const Field &F, const BlockLanczosTraits &traits)
		: _traits (traits), _F (F), _VD (F), _MD (F), _randiter (F), _N (traits.blockingFactor ())
	{
		init_temps ();
		_F.init (_one, 1);
	}

	/** Constructor with a random iterator
	 * @param F Field over which to operate
	 * @param traits @ref{SolverTraits} structure describing user
	 *               options for the solver 
	 * @param r Random iterator to use for randomization
	 */
	BlockLanczosSolver (const Field &F, const BlockLanczosTraits &traits, typename Field::RandIter r)
		: _traits (traits), _F (F), _VD (F), _MD (F), _randiter (r), _N (traits.blockingFactor ())
	{
		init_temps ();
		_F.init (_one, 1);
	}

	/** Solve the linear system Ax = b.
	 *
	 * If the system is nonsingular, this method computes the unique
	 * solution to the system Ax = b. If the system is singular, it computes
	 * a random solution.
	 *
	 * If the matrix A is nonsymmetric, this method preconditions the matrix
	 * A with the preconditioner D_1 A^T D_2 A D_1, where D_1 and D_2 are
	 * random nonsingular diagonal matrices. If the matrix A is symmetric,
	 * this method preconditions the system with A D, where D is a random
	 * diagonal matrix.
	 *
	 * @param A Black box for the matrix A
	 * @param x Vector in which to store solution
	 * @param b Right-hand side of system
	 * @return Reference to solution vector
	 */
	template <class Blackbox, class Vector>
	Vector &solve (const Blackbox &A, Vector &x, const Vector &b);

    private:

	// S_i is represented here as a vector of booleans, where the entry at
	// index j is true if and only if the corresponding column of V_i is to
	// be included in W_i

	// All references to Winv are actually -Winv

	// Run the block Lanczos iteration and return the result. Return false
	// if the method breaks down. Do not check that Ax = b in the end
	template <class Blackbox, class Vector>
	bool iterate (const Blackbox &A, Vector &x, const Vector &b);

	// Compute W_i^inv and S_i given V_i^T A V_i
	int compute_Winv_S (Matrix            &Winv,
			    std::vector<bool> &S,
			    const Matrix      &T);

	// Given B with N columns and S_i, compute B S_i S_i^T
	template <class Matrix1, class Matrix2>
	Matrix1 &mul_SST (Matrix1                 &BSST,
			  const Matrix2           &B,
			  const std::vector<bool> &S) const;

	// Matrix-matrix multiply
	// C = A * B * S_i * S_i^T
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mul (Matrix1                 &C,
		      const Matrix2           &A,
		      const Matrix3           &B,
		      const std::vector<bool> &S) const;

	// In-place matrix-matrix multiply on the right
	// A = A * B * S_i * S_i^T
	// This is a version of the above optimized to use as little additional
	// memory as possible
	template <class Matrix1, class Matrix2>
	Matrix1 &mulin (Matrix1                 &A,
			const Matrix2           &B,
			const std::vector<bool> &S) const;

	// Matrix-vector multiply
	// w = A * S_i * S_i^T * v
	template <class Vector1, class Matrix1, class Vector2>
	Vector1 &vectorMul (Vector1                 &w,
			    const Matrix1           &A,
			    const Vector2           &v,
			    const std::vector<bool> &S) const;

	// Matrix-vector transpose multiply
	// w = (A * S_i * S_i^T)^T * v
	template <class Vector1, class Matrix1, class Vector2>
	Vector1 &vectorMulTranspose (Vector1                 &w,
				     const Matrix1           &A,
				     const Vector2           &v,
				     const std::vector<bool> &S) const;

	// Matrix-matrix addition
	// A = A + B * S_i * S_i^T
	template <class Matrix1, class Matrix2>
	Matrix1 &addin (Matrix1                 &A,
			const Matrix2           &B,
			const std::vector<bool> &S) const;

	// Add I_N to the given N x N matrix
	// A = A + I_N
	template <class Matrix1>
	Matrix1 &addIN (Matrix1 &A) const;

	// Given a vector S of bools, write an array of array indices in which
	// the true values of S are last
	void permute (std::vector<size_t>     &indices,
		      const std::vector<bool> &S) const;

	// Set the given matrix to the identity
	template <class Matrix1>
	Matrix1 &setIN (Matrix1 &A) const;

	// Find a suitable pivot row for a column and exchange it with the given
	// row
	bool find_pivot_row (Matrix                    &A,
			     size_t                     row,
			     int                        col_offset,
			     const std::vector<size_t> &indices);

	// Eliminate all entries in a column except the pivot row, using row
	// operations from the pivot row
	void eliminate_col (Matrix                    &A,
			    size_t                     pivot,
			    int                        col_offset,
			    const std::vector<size_t> &indices,
			    const Element             &Ajj_inv);

	// Initialize the temporaries used in computation
	void init_temps ();

	// Private variables

	const BlockLanczosTraits _traits;
	const Field              &_F;
	VectorDomain<Field>       _VD;
	MatrixDomain<Field>       _MD;
	typename Field::RandIter  _randiter;

	// Temporaries used in the computation

	Matrix  _V[3];             // n x N
	Matrix  _AV;               // n x N
	Matrix  _VTAV;             // N x N
	Matrix  _Winv[2];          // N x N
	Matrix  _AVTAVSST_VTAV;    // N x N
	Matrix  _T;                // N x N
	Matrix  _DEF;              // N x N
	std::vector<bool>         _S;                // N-vector of bools

	mutable typename Vector<Field>::Dense _tmp;  // N

	typename Field::Element   _one;

	std::vector<size_t>       _indices;          // N

	mutable Matrix _M;         // N x 2N

	// Blocking factor

	size_t                    _N;

	// Construct a transpose matrix on the fly
	template <class Matrix1>
	TransposeMatrix<Matrix1> transpose (Matrix1 &M) const
		{ return TransposeMatrix<Matrix1> (M); }


    protected:

	template <class Matrix1>
	bool isAlmostIdentity (const Matrix1 &M) const;

	// Test suite for the above functions

	bool test_compute_Winv_S_mul (int n) const;
	bool test_compute_Winv_S_mulin (int n) const;
	bool test_mul_SST (int n) const;
	bool test_mul_ABSST (int n) const;
	bool test_mulTranspose (int m, int n) const;
	bool test_mulTranspose_ABSST (int n) const;
	bool test_mulin_ABSST (int n) const;
	bool test_addin_ABSST (int n) const;

    public:

	bool runSelfCheck () const;
};

} // namespace LinBox

#include "block-lanczos.inl"

#endif // __BLOCK_LANCZOS_H