/usr/include/InsightToolkit/Review/itkTriangleHelper.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkTriangleHelper.txx
Language: C++
Date: $Date$
Version: $Rev$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkTriangleHelper_txx
#define __itkTriangleHelper_txx
#include "itkTriangleHelper.h"
namespace itk
{
template< typename TPoint >
bool TriangleHelper< TPoint >::
IsObtuse( const PointType& iA, const PointType& iB, const PointType& iC )
{
VectorType v01 = iB - iA;
VectorType v02 = iC - iA;
VectorType v12 = iC - iB;
if( v01 * v02 < 0.0 )
{
return true;
}
else
{
if( v02 * v12 < 0.0 )
{
return true;
}
else
{
if( v01 * -v12 < 0.0 )
{
return true;
}
else
{
return false;
}
}
}
}
template< typename TPoint >
typename TriangleHelper< TPoint >::VectorType
TriangleHelper< TPoint >::ComputeNormal( const PointType& iA,
const PointType& iB,
const PointType& iC )
{
CrossVectorType cross;
VectorType w = cross ( iB - iA, iC - iA );
CoordRepType l2 = w.GetSquaredNorm();
if( l2 != 0.0 )
{
w /= vcl_sqrt( l2 );
}
return w;
}
template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::Cotangent ( const PointType& iA,
const PointType& iB,
const PointType& iC )
{
VectorType v21 = iA - iB;
CoordRepType v21_l2 = v21.GetSquaredNorm();
if( v21_l2 != 0.0 )
{
v21 /= vcl_sqrt( v21_l2 );
}
else
{
}
VectorType v23 = iC - iB;
CoordRepType v23_l2 = v23.GetSquaredNorm();
if( v23_l2 != 0.0 )
{
v23 /= vcl_sqrt( v23_l2 );
}
else
{
}
CoordRepType bound( 0.999999 );
CoordRepType cos_theta = vnl_math_max( -bound,
vnl_math_min( bound, v21 * v23 ) );
return 1.0 / vcl_tan( vcl_acos( cos_theta ) );
}
template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeBarycenter (
const CoordRepType& iA1, const PointType& iP1,
const CoordRepType& iA2, const PointType& iP2,
const CoordRepType& iA3, const PointType& iP3 )
{
PointType oPt;
CoordRepType total = iA1 + iA2 + iA3;
if( total == 0. )
{
//in such case there is no barycenter;
oPt.Fill( 0. );
return oPt;
}
CoordRepType inv_total = 1. / total;
CoordRepType a1 = iA1 * inv_total;
CoordRepType a2 = iA2 * inv_total;
CoordRepType a3 = iA3 * inv_total;
for ( unsigned int dim = 0; dim < PointDimension; ++dim )
{
oPt[dim] = a1 * iP1[dim] + a2 * iP2[dim] + a3 * iP3[dim];
}
return oPt;
}
template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeAngle( const PointType& iP1,
const PointType& iP2,
const PointType& iP3 )
{
VectorType v21 = iP1 - iP2;
VectorType v23 = iP3 - iP2;
CoordRepType v21_l2 = v21.GetSquaredNorm();
CoordRepType v23_l2 = v23.GetSquaredNorm();
if( v21_l2 != 0.0 )
v21 /= vcl_sqrt( v21_l2 );
if( v23_l2 != 0.0 )
v23 /= vcl_sqrt( v23_l2 );
CoordRepType bound( 0.999999 );
CoordRepType cos_theta = vnl_math_max( -bound,
vnl_math_min( bound, v21 * v23 ) );
return vcl_acos( cos_theta );
}
template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeGravityCenter (
const PointType& iP1,
const PointType& iP2,
const PointType& iP3 )
{
return ComputeBarycenter( 1., iP1, 1., iP2, 1., iP3 );
}
template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeCircumCenter (
const PointType& iP1,
const PointType& iP2,
const PointType& iP3 )
{
PointType oPt;
oPt.Fill ( 0.0 );
CoordRepType a = iP2.SquaredEuclideanDistanceTo ( iP3 );
CoordRepType b = iP1.SquaredEuclideanDistanceTo ( iP3 );
CoordRepType c = iP2.SquaredEuclideanDistanceTo ( iP1 );
CoordRepType Weight[3];
Weight[0] = a * ( b + c - a );
Weight[1] = b * ( c + a - b );
Weight[2] = c * ( a + b - c );
return ComputeBarycenter( Weight[0], iP1, Weight[1], iP2, Weight[2], iP3 );
}
template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeConstrainedCircumCenter ( const PointType& iP1,
const PointType& iP2, const PointType& iP3 )
{
PointType oPt;
CoordRepType a = iP2.SquaredEuclideanDistanceTo ( iP3 );
CoordRepType b = iP1.SquaredEuclideanDistanceTo ( iP3 );
CoordRepType c = iP2.SquaredEuclideanDistanceTo ( iP1 );
CoordRepType Weight[3];
Weight[0] = a * ( b + c - a );
Weight[1] = b * ( c + a - b );
Weight[2] = c * ( a + b - c );
for ( unsigned int i = 0; i < 3; i++ )
{
if ( Weight[i] < 0.0 )
{
Weight[i] = 0.;
}
}
return ComputeBarycenter( Weight[0], iP1, Weight[1], iP2, Weight[2], iP3 );
}
template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeArea ( const PointType& iP1,
const PointType& iP2,
const PointType& iP3 )
{
CoordRepType a = iP2.EuclideanDistanceTo ( iP3 );
CoordRepType b = iP1.EuclideanDistanceTo ( iP3 );
CoordRepType c = iP2.EuclideanDistanceTo ( iP1 );
CoordRepType s = 0.5 * ( a + b + c );
return static_cast< CoordRepType > ( vcl_sqrt ( s * ( s - a ) * ( s - b ) * ( s - c ) ) );
}
}
#endif
|