/usr/include/InsightToolkit/Review/itkSharedMorphologyUtilities.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkSharedMorphologyUtilities.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSharedMorphologyUtilities_txx
#define __itkSharedMorphologyUtilities_txx
#include "itkSharedMorphologyUtilities.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include <list>
namespace itk {
/**
* \class SharedMorphUtilities
* \brief functionality in common for anchor and VanHerkGilWerman openings/closings and
* erosions/dilation
*
*/
template <class TRegion, class TLine>
bool NeedToDoFace(const TRegion AllImage,
const TRegion face,
const TLine line)
{
// can't use the continuous IsInside (even if I could get it to
// work) because on the edge doesn't count as inside for this test
// If the component of the vector orthogonal to the face doesn't go
// inside the image then we can ignore the face
// find the small dimension of the face - should only be one
typename TRegion::IndexType ISt = AllImage.GetIndex();
typename TRegion::SizeType FSz = face.GetSize();
typename TRegion::IndexType FSt = face.GetIndex();
unsigned smallDim = 0;
for (unsigned i = 0; i < AllImage.GetImageDimension(); i++)
{
if (FSz[i] == 1)
{
smallDim = i;
break;
}
}
long startI = ISt[smallDim];
long facePos = FSt[smallDim] + FSz[smallDim] - 1;
if (facePos == startI)
{
// at the start of dimension - vector must be positive
if (line[smallDim] > 0.000001) return true;
// some small angle that we consider to be zero - should be more rigorous
}
else
{
// at the end of dimension - vector must be positive
if (line[smallDim] < -0.000001) return true;
}
return (false);
}
template <class TImage, class TBres, class TLine>
int ComputeStartEnd(const typename TImage::IndexType StartIndex,
const TLine line,
const float tol,
const typename TBres::OffsetArray LineOffsets,
const typename TImage::RegionType AllImage,
unsigned &start,
unsigned &end)
{
// compute intersection between ray and box
typename TImage::IndexType ImStart = AllImage.GetIndex();
typename TImage::SizeType ImSize = AllImage.GetSize();
float Tfar = NumericTraits<float>::max();
float Tnear = NumericTraits<float>::NonpositiveMin();
float domdir = NumericTraits<float>::NonpositiveMin();
int sPos, ePos;
unsigned perpdir = 0;
for (unsigned i = 0; i< TImage::RegionType::ImageDimension; i++)
{
if (vcl_fabs(line[i]) > domdir)
{
domdir = vcl_fabs(line[i]);
perpdir = i;
}
if (vcl_fabs(line[i]) > tol)
{
int P1 = ImStart[i] - StartIndex[i];
int P2 = ImStart[i] + ImSize[i] - 1 - StartIndex[i];
float T1 = ((float)(P1))/line[i];
float T2 = ((float)(P2))/line[i];
if (T1 > T2)
{
// T1 is meant to be the near face
std::swap(T1, T2);
}
// want the farthest Tnear and nearest TFar
if (T1 > Tnear)
{
Tnear = T1;
}
if (T2 < Tfar)
{
Tfar = T2;
}
}
else
{
// parallel to an axis - check for intersection at all
if ((StartIndex[i] < ImStart[i]) || (StartIndex[i] > ImStart[i] + (int)ImSize[i] - 1))
{
// no intersection
start=end=0;
return(0);
}
}
}
sPos = (int)(Tnear*vcl_fabs(line[perpdir]) + 0.5);
ePos = (int)(Tfar*vcl_fabs(line[perpdir]) + 0.5);
//std::cout << Tnear << " " << Tfar << std::endl;
if (Tfar < Tnear) // seems to need some margin
{
// in theory, no intersection, but search between them
bool intersection = false;
unsigned inside;
if (Tnear - Tfar < 10)
{
// std::cout << "Searching " << Tnear << " " << Tfar << std::endl;
assert(ePos >= 0);
assert(sPos < (int)LineOffsets.size());
for (int i = ePos; i<= sPos; i++)
{
if (AllImage.IsInside(StartIndex + LineOffsets[i]))
{
inside = i;
intersection=true;
break;
}
}
}
if (intersection)
{
// std::cout << "Found intersection after all :: " << inside << std::endl;
sPos = ePos = inside;
assert(ePos + 1 >= 0);
assert(ePos + 1 < (int)LineOffsets.size());
while (AllImage.IsInside(StartIndex + LineOffsets[ePos + 1]))
{
++ePos;
assert(ePos + 1 >= 0);
assert(ePos + 1 < (int)LineOffsets.size());
}
assert(sPos - 1 >= 0);
assert(sPos - 1 < (int)LineOffsets.size());
while (AllImage.IsInside(StartIndex + LineOffsets[sPos - 1]))
{
--sPos;
assert(sPos - 1 >= 0);
assert(sPos - 1 < (int)LineOffsets.size());
}
start = sPos;
end = ePos;
}
else
{
// std::cout << StartIndex << "No intersection" << std::endl;
start=end=0;
return(0);
}
}
else
{
assert(sPos >= 0);
assert(sPos < (int)LineOffsets.size());
if (AllImage.IsInside(StartIndex + LineOffsets[sPos]))
{
for (;sPos>0;)
{
assert(sPos - 1 >= 0);
assert(sPos - 1 < (int)LineOffsets.size());
if (!AllImage.IsInside(StartIndex + LineOffsets[sPos - 1])) break;
else --sPos;
}
}
else
{
for(;sPos<(int)LineOffsets.size();)
{
assert(sPos >= 0);
assert(sPos < (int)LineOffsets.size());
++sPos;
if (!AllImage.IsInside(StartIndex + LineOffsets[sPos])) ++sPos;
else break;
}
}
if (AllImage.IsInside(StartIndex + LineOffsets[ePos]))
{
for(;ePos<(int)LineOffsets.size();)
{
assert(ePos + 1 >= 0);
assert(ePos + 1 < (int)LineOffsets.size());
if (!AllImage.IsInside(StartIndex + LineOffsets[ePos + 1])) break;
else ++ePos;
}
}
else
{
for (;ePos>0;)
{
--ePos;
assert(ePos >= 0);
assert(ePos < (int)LineOffsets.size());
if (!AllImage.IsInside(StartIndex + LineOffsets[ePos])) --ePos;
else break;
}
}
}
start = sPos;
end = ePos;
return (1);
}
template <class TImage, class TBres>
void CopyLineToImage(const typename TImage::Pointer output,
const typename TImage::IndexType StartIndex,
const typename TBres::OffsetArray LineOffsets,
const typename TImage::PixelType * outbuffer,
const unsigned start,
const unsigned end)
{
unsigned size = end - start + 1;
for (unsigned i = 0; i <size; i++)
{
assert(start + i >= 0);
assert(start + i < LineOffsets.size());
#if 1
output->SetPixel(StartIndex + LineOffsets[start + i], outbuffer[i+1]); //compat
#else
typename TImage::IndexType I = StartIndex + LineOffsets[start + i];
output->SetPixel(I, 1 + output->GetPixel(I));
#endif
}
}
template <class TInputImage, class TLine>
typename TInputImage::RegionType
MakeEnlargedFace(const typename TInputImage::ConstPointer itkNotUsed( input ),
const typename TInputImage::RegionType AllImage,
const TLine line)
{
#if 0
// use the face calculator to produce a face list
typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>
FaceCalculatorType;
FaceCalculatorType faceCalculator;
typename TInputImage::SizeType radius;
radius.Fill(1);
typename FaceCalculatorType::FaceListType faceList;
faceList = faceCalculator(input, AllImage, radius);
typename FaceCalculatorType::FaceListType::iterator fit;
fit = faceList.begin();
++fit;
#else
// the face list calculator strategy fails in multithreaded mode
// with 1D kernels
// because it doesn't return faces of the sub-blocks if they don't
// fall along the edge of the image
typedef typename TInputImage::RegionType RegionType;
typedef typename TInputImage::SizeType SizeType;
typedef typename TInputImage::IndexType IndexType;
typedef std::list<RegionType> FaceListType;
FaceListType faceList;
for (unsigned i = 0; i < TInputImage::ImageDimension; i++)
{
RegionType R1, R2;
SizeType S1 = AllImage.GetSize();
IndexType I2 = AllImage.GetIndex();
S1[i]=1;
R1 = AllImage;
R2 = AllImage;
// the first face will have the same starting index and one
// dimension removed
R1.SetSize(S1);
I2[i] = I2[i] + AllImage.GetSize()[i] - 1;
R2.SetSize(S1);
R2.SetIndex(I2);
faceList.push_back(R1);
faceList.push_back(R2);
// std::cout << R1 << R2 << std::endl;
}
typename FaceListType::iterator fit;
fit = faceList.begin();
#endif
typename TInputImage::RegionType RelevantRegion;
bool foundFace = false;
float MaxComp = NumericTraits<float>::NonpositiveMin();
unsigned DomDir = 0;
//std::cout << "------------" << std::endl;
// figure out the dominant direction of the line
for (unsigned i = 0;i< TInputImage::RegionType::ImageDimension;i++)
{
if (vcl_fabs(line[i]) > MaxComp)
{
MaxComp = vcl_fabs(line[i]);
DomDir = i;
}
}
for (;fit != faceList.end();++fit)
{
// check whether this face is suitable for parallel sweeping - i.e
// whether the line is within 45 degrees of the perpendicular
// Figure out the perpendicular using the region size
unsigned FaceDir = 0;
// std::cout << "Face " << *fit << std::endl;
for (unsigned i = 0;i< TInputImage::RegionType::ImageDimension;i++)
{
if (fit->GetSize()[i] == 1) FaceDir = i;
}
if (FaceDir == DomDir) // within 1 degree
{
// now check whether the line goes inside the image from this face
if ( NeedToDoFace<ITK_TYPENAME TInputImage::RegionType, TLine>(AllImage, *fit, line) )
{
// std::cout << "Using face: " << *fit << line << std::endl;
RelevantRegion = *fit;
foundFace = true;
break;
}
}
}
if (foundFace)
{
// enlarge the region so that sweeping the line across it will
// cause all pixels to be visited.
// find the dimension not within the face
unsigned NonFaceDim = 0;
for (unsigned i = 0; i < TInputImage::RegionType::ImageDimension;i++)
{
if (RelevantRegion.GetSize()[i] == 1)
{
NonFaceDim=i;
break;
}
}
// figure out how much extra each other dimension needs to be extended
typename TInputImage::SizeType NewSize = RelevantRegion.GetSize();
typename TInputImage::IndexType NewStart = RelevantRegion.GetIndex();
unsigned NonFaceLen = AllImage.GetSize()[NonFaceDim];
for (unsigned i = 0; i < TInputImage::RegionType::ImageDimension;i++)
{
if (i != NonFaceDim)
{
int Pad = Math::Ceil<int>((float)(NonFaceLen) * line[i]/vcl_fabs(line[NonFaceDim]));
if (Pad < 0)
{
// just increase the size - no need to change the start
NewSize[i] += abs(Pad) + 1;
}
else
{
// change the size and index
NewSize[i] += Pad + 1;
NewStart[i] -= Pad + 1;
}
}
}
RelevantRegion.SetSize(NewSize);
RelevantRegion.SetIndex(NewStart);
}
else
{
std::cout << "Line " << line << " doesnt correspond to a face" << std::endl;
}
// std::cout << "Result region = " << RelevantRegion << std::endl;
// std::cout << "+++++++++++++++++" << std::endl;
return RelevantRegion;
}
template <class TImage, class TBres, class TLine>
int FillLineBuffer(typename TImage::ConstPointer input,
const typename TImage::IndexType StartIndex,
const TLine line, // unit vector
const float tol,
const typename TBres::OffsetArray LineOffsets,
const typename TImage::RegionType AllImage,
typename TImage::PixelType * inbuffer,
unsigned int &start,
unsigned int &end)
{
// if (AllImage.IsInside(StartIndex))
// {
// start = 0;
// }
// else
#if 0
// we need to figure out where to start
// this is an inefficient way we'll use for testing
for (start=0;start < LineOffsets.size();++start)
{
if (AllImage.IsInside(StartIndex + LineOffsets[start])) break;
}
#else
int status = ComputeStartEnd<TImage, TBres, TLine>(StartIndex, line, tol, LineOffsets, AllImage,
start, end);
if (!status) return(status);
#endif
#if 1
unsigned size = end - start + 1;
// compat
for (unsigned i = 0; i < size;i++)
{
assert(start + i >= 0);
assert(start + i < LineOffsets.size());
inbuffer[i+1] = input->GetPixel(StartIndex + LineOffsets[start + i]);
}
#else
typedef ImageRegionConstIteratorWithIndex<TImage> ItType;
ItType it(input, AllImage);
it.SetIndex(StartIndex);
for (unsigned i = 0; i < lastPos;i++)
{
inbuffer[i]= it.Get();
assert(i >= 0);
assert(i < LineOffsets.size());
typename TImage::IndexType I = StartIndex + LineOffsets[i];
typename TImage::OffsetType Off = I - it.GetIndex();
it += Off;
}
#endif
return(1);
}
template <class TLine>
unsigned int GetLinePixels(const TLine line)
{
float N = line.GetNorm();
float correction = 0.0;
for (unsigned int i = 0; i < TLine::Dimension; i++)
{
float tt = vcl_fabs(line[i]/N);
if (tt > correction) correction=tt;
}
N *= correction;
return (int)(N + 0.5);
}
} // namespace itk
#endif
|