This file is indexed.

/usr/include/InsightToolkit/Review/itkOptMeanSquaresImageToImageMetric.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkOptMeanSquaresImageToImageMetric.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkOptMeanSquaresImageToImageMetric_txx
#define __itkOptMeanSquaresImageToImageMetric_txx

#include "itkOptMeanSquaresImageToImageMetric.h"
#include "itkCovariantVector.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"
#include "itkImageIterator.h"
#include "vnl/vnl_math.h"

namespace itk
{

/**
 * Constructor
 */
template < class TFixedImage, class TMovingImage >
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::MeanSquaresImageToImageMetric()
{
  this->SetComputeGradient(true);

  m_ThreaderMSE = NULL;
  m_ThreaderMSEDerivatives = NULL;
  this->m_WithinThreadPreProcess = false;
  this->m_WithinThreadPostProcess = false;

  //  For backward compatibility, the default behavior is to use all the pixels
  //  in the fixed image.
  //  This should be fixed in ITKv4 so that this metric behaves as the others.
  this->SetUseAllPixels( true );
}

template < class TFixedImage, class TMovingImage >
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::~MeanSquaresImageToImageMetric()
{
  if(m_ThreaderMSE != NULL)
    {
    delete [] m_ThreaderMSE;
    }
  m_ThreaderMSE = NULL;

  if(m_ThreaderMSEDerivatives != NULL)
    {
    delete [] m_ThreaderMSEDerivatives;
    }
  m_ThreaderMSEDerivatives = NULL;
}

/**
 * Print out internal information about this class
 */
template < class TFixedImage, class TMovingImage  >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
 
  Superclass::PrintSelf(os, indent);

}


/**
 * Initialize
 */
template <class TFixedImage, class TMovingImage>
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::Initialize(void) throw ( ExceptionObject )
{

  this->Superclass::Initialize();
  this->Superclass::MultiThreadingInitialize();

  if(m_ThreaderMSE != NULL)
    {
    delete [] m_ThreaderMSE;
    }
  m_ThreaderMSE = new double[this->m_NumberOfThreads];

  if(m_ThreaderMSEDerivatives != NULL)
    {
    delete [] m_ThreaderMSEDerivatives;
    }
  m_ThreaderMSEDerivatives = new DerivativeType[this->m_NumberOfThreads];
  for(unsigned int threadID=0; threadID<this->m_NumberOfThreads; threadID++)
    {
    m_ThreaderMSEDerivatives[threadID].SetSize( this->m_NumberOfParameters );
    }
}

template < class TFixedImage, class TMovingImage  >
inline bool
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueThreadProcessSample( unsigned int threadID,
                               unsigned long fixedImageSample,
                               const MovingImagePointType & itkNotUsed(mappedPoint),
                               double movingImageValue) const
{
  double diff = movingImageValue - this->m_FixedImageSamples[fixedImageSample].value;

  m_ThreaderMSE[threadID] += diff*diff;

  return true;
}

template < class TFixedImage, class TMovingImage  >
typename MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::MeasureType
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValue( const ParametersType & parameters ) const
{
  itkDebugMacro("GetValue( " << parameters << " ) ");

  if( !this->m_FixedImage )
    {
    itkExceptionMacro( << "Fixed image has not been assigned" );
    }

  memset( m_ThreaderMSE,
          0,
          this->m_NumberOfThreads * sizeof(MeasureType) );

  // Set up the parameters in the transform
  this->m_Transform->SetParameters( parameters );
  this->m_Parameters = parameters;

  // MUST BE CALLED TO INITIATE PROCESSING
  this->GetValueMultiThreadedInitiate();

  itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
                 << this->m_NumberOfPixelsCounted << " / "
                 << this->m_NumberOfFixedImageSamples
                 << std::endl );

  if( this->m_NumberOfPixelsCounted <
      this->m_NumberOfFixedImageSamples / 4 )
    {
    itkExceptionMacro( "Too many samples map outside moving image buffer: "
                       << this->m_NumberOfPixelsCounted << " / "
                       << this->m_NumberOfFixedImageSamples
                       << std::endl );
    }

  double mse = m_ThreaderMSE[0];
  for(unsigned int t=1; t<this->m_NumberOfThreads; t++)
    {
    mse += m_ThreaderMSE[t];
    }
  mse /= this->m_NumberOfPixelsCounted;

  return mse;
}


template < class TFixedImage, class TMovingImage  >
inline bool
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivativeThreadProcessSample( unsigned int threadID,
                                    unsigned long fixedImageSample,
                                    const MovingImagePointType & itkNotUsed(mappedPoint),
                                    double movingImageValue,
                                    const ImageDerivativesType &
                                    movingImageGradientValue ) const
{
  double diff = movingImageValue - this->m_FixedImageSamples[fixedImageSample].value;

  m_ThreaderMSE[threadID] += diff*diff;

  FixedImagePointType fixedImagePoint = this->m_FixedImageSamples[fixedImageSample].point;

  // Need to use one of the threader transforms if we're
  // not in thread 0.
  //
  // Use a raw pointer here to avoid the overhead of smart pointers.
  // For instance, Register and UnRegister have mutex locks around
  // the reference counts.
  TransformType* transform;

  if (threadID > 0)
    {
    transform = this->m_ThreaderTransform[threadID - 1];
    }
  else
    {
    transform = this->m_Transform;
    }

  // Jacobian should be evaluated at the unmapped (fixed image) point.
  const TransformJacobianType & jacobian = transform
                                               ->GetJacobian( fixedImagePoint );

  for(unsigned int par=0; par<this->m_NumberOfParameters; par++)
    {
    double sum = 0.0;
    for(unsigned int dim=0; dim<MovingImageDimension; dim++)
      {
      sum += 2.0 * diff * jacobian( dim, par ) * movingImageGradientValue[dim];
      }
    m_ThreaderMSEDerivatives[threadID][par] += sum;
    }

  return true;
}

/**
 * Get the both Value and Derivative Measure
 */
template < class TFixedImage, class TMovingImage  >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivative( const ParametersType & parameters,
                         MeasureType & value,
                         DerivativeType & derivative) const
{

  if( !this->m_FixedImage )
    {
    itkExceptionMacro( << "Fixed image has not been assigned" );
    }

  // Set up the parameters in the transform
  this->m_Transform->SetParameters( parameters );
  this->m_Parameters = parameters;

  // Reset the joint pdfs to zero
  memset( m_ThreaderMSE,
          0,
          this->m_NumberOfThreads * sizeof(MeasureType) );

  // Set output values to zero
  if(derivative.GetSize() != this->m_NumberOfParameters)
    {
    derivative = DerivativeType( this->m_NumberOfParameters );
    }
  memset( derivative.data_block(),
          0,
          this->m_NumberOfParameters * sizeof(double) );

  for( unsigned int threadID = 0; threadID<this->m_NumberOfThreads; threadID++ )
    {
    memset( m_ThreaderMSEDerivatives[threadID].data_block(),
            0,
            this->m_NumberOfParameters * sizeof(double) );
    }

  // MUST BE CALLED TO INITIATE PROCESSING
  this->GetValueAndDerivativeMultiThreadedInitiate();

  itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
                 << this->m_NumberOfPixelsCounted << " / "
                 << this->m_NumberOfFixedImageSamples
                 << std::endl );

  if( this->m_NumberOfPixelsCounted <
      this->m_NumberOfFixedImageSamples / 4 )
    {
    itkExceptionMacro( "Too many samples map outside moving image buffer: "
                       << this->m_NumberOfPixelsCounted << " / "
                       << this->m_NumberOfFixedImageSamples
                       << std::endl );
    }

  value = 0;
  for(unsigned int t=0; t<this->m_NumberOfThreads; t++)
    {
    value += m_ThreaderMSE[t];
    for(unsigned int parameter = 0; parameter < this->m_NumberOfParameters;
        parameter++)
      {
      derivative[parameter] += m_ThreaderMSEDerivatives[t][parameter];
      }
    }

  value /= this->m_NumberOfPixelsCounted;
  for(unsigned int parameter = 0; parameter < this->m_NumberOfParameters;
      parameter++)
    {
    derivative[parameter] /= this->m_NumberOfPixelsCounted;
    }
}


/**
 * Get the match measure derivative
 */
template < class TFixedImage, class TMovingImage  >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetDerivative( const ParametersType & parameters,
                 DerivativeType & derivative ) const
{
  if( !this->m_FixedImage )
    {
    itkExceptionMacro( << "Fixed image has not been assigned" );
    }

  MeasureType value;
  // call the combined version
  this->GetValueAndDerivative( parameters, value, derivative );
}

} // end namespace itk


#endif