This file is indexed.

/usr/include/InsightToolkit/Review/itkOptBSplineInterpolateImageFunction.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkOptBSplineInterpolateImageFunction.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  Portions of this code are covered under the VTK copyright.
  See VTKCopyright.txt or http://www.kitware.com/VTKCopyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkOptBSplineInterpolateImageFunction_h
#define __itkOptBSplineInterpolateImageFunction_h

#include <vector>

#include "itkImageLinearIteratorWithIndex.h"
#include "itkInterpolateImageFunction.h"
#include "vnl/vnl_matrix.h"

#include "itkBSplineDecompositionImageFilter.h"
#include "itkConceptChecking.h"
#include "itkCovariantVector.h"

namespace itk
{
/** \class BSplineInterpolateImageFunction
 * \brief Evaluates the B-Spline interpolation of an image.  Spline order may be from 0 to 5.
 *
 * This class defines N-Dimension B-Spline transformation.
 * It is based on:
 *    [1] M. Unser,
 *       "Splines: A Perfect Fit for Signal and Image Processing,"
 *        IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38,
 *        November 1999.
 *    [2] M. Unser, A. Aldroubi and M. Eden,
 *        "B-Spline Signal Processing: Part I--Theory,"
 *        IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832,
 *        February 1993.
 *    [3] M. Unser, A. Aldroubi and M. Eden,
 *        "B-Spline Signal Processing: Part II--Efficient Design and Applications,"
 *        IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848,
 *        February 1993.
 * And code obtained from bigwww.epfl.ch by Philippe Thevenaz
 *
 * The B spline coefficients are calculated through the
 * BSplineDecompositionImageFilter
 *
 * Limitations:  Spline order must be between 0 and 5.
 *               Spline order must be set before setting the image.
 *               Uses mirror boundary conditions.
 *               Requires the same order of Spline for each dimension.
 *               Spline is determined in all dimensions, cannot selectively
 *                  pick dimension for calculating spline.
 *
 * \sa BSplineDecompositionImageFilter
 *
 * \ingroup ImageFunctions
 */
template <
  class TImageType,
  class TCoordRep = double,
  class TCoefficientType = double >
class ITK_EXPORT BSplineInterpolateImageFunction :
    public InterpolateImageFunction<TImageType,TCoordRep>
{
public:
  /** Standard class typedefs. */
  typedef BSplineInterpolateImageFunction                   Self;
  typedef InterpolateImageFunction<TImageType,TCoordRep>    Superclass;
  typedef SmartPointer<Self>                                Pointer;
  typedef SmartPointer<const Self>                          ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(BSplineInterpolateImageFunction, InterpolateImageFunction);


  /** New macro for creation of through a Smart Pointer */
  itkNewMacro( Self );

  /** OutputType typedef support. */
  typedef typename Superclass::OutputType OutputType;

  /** InputImageType typedef support. */
  typedef typename Superclass::InputImageType InputImageType;

  /** Dimension underlying input image. */
  itkStaticConstMacro(ImageDimension, unsigned int,Superclass::ImageDimension);

  /** Index typedef support. */
  typedef typename Superclass::IndexType IndexType;

  /** ContinuousIndex typedef support. */
  typedef typename Superclass::ContinuousIndexType ContinuousIndexType;

  /** PointType typedef support */
  typedef typename Superclass::PointType PointType;

  /** Iterator typedef support */
  typedef ImageLinearIteratorWithIndex<TImageType> Iterator;

  /** Internal Coefficient typedef support */
  typedef TCoefficientType CoefficientDataType;
  typedef Image<CoefficientDataType,
                     itkGetStaticConstMacro(ImageDimension) >
                                                           CoefficientImageType;

  /** Define filter for calculating the BSpline coefficients */
  typedef BSplineDecompositionImageFilter<TImageType,
                                               CoefficientImageType>
                                                              CoefficientFilter;
  typedef typename CoefficientFilter::Pointer CoefficientFilterPointer;

  /** Derivative typedef support */
  typedef CovariantVector<OutputType,
                          itkGetStaticConstMacro(ImageDimension) >
                                                            CovariantVectorType;


  /** Evaluate the function at a ContinuousIndex position.
   *
   * Returns the B-Spline interpolated image intensity at a
   * specified point position. No bounds checking is done.
   * The point is assume to lie within the image buffer.
   *
   * ImageFunction::IsInsideBuffer() can be used to check bounds before
   * calling the method. */
  virtual OutputType Evaluate( const PointType & point ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );
    // No thread info passed in, so call method that doesn't need thread ID.
    return ( this->EvaluateAtContinuousIndex( index ) );
    }

  virtual OutputType Evaluate( const PointType & point,
                               unsigned int threadID ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );
    return ( this->EvaluateAtContinuousIndex( index, threadID ) );
    }

  virtual OutputType EvaluateAtContinuousIndex( const ContinuousIndexType &
                                                                 index ) const
    {
    // Don't know thread information, make evaluateIndex, weights on the stack.
    // Slower, but safer.
    vnl_matrix<long>        evaluateIndex(ImageDimension, ( m_SplineOrder + 1 ));
    vnl_matrix<double>      weights(ImageDimension, ( m_SplineOrder + 1 ));

    // Pass evaluateIndex, weights by reference. They're only good as long
    // as this method is in scope.
    return this->EvaluateAtContinuousIndexInternal( index,
                                                    evaluateIndex,
                                                    weights);
    }

  virtual OutputType EvaluateAtContinuousIndex( const ContinuousIndexType &
                                                                        index,
                                                unsigned int threadID ) const;

  CovariantVectorType EvaluateDerivative( const PointType & point ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );
    // No thread info passed in, so call method that doesn't need thread ID.
    return ( this->EvaluateDerivativeAtContinuousIndex( index ) );
    }

  CovariantVectorType EvaluateDerivative( const PointType & point,
                                          unsigned int threadID ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );
    return ( this->EvaluateDerivativeAtContinuousIndex( index, threadID ) );
    }

  CovariantVectorType EvaluateDerivativeAtContinuousIndex(
                                         const ContinuousIndexType & x ) const
    {
    // Don't know thread information, make evaluateIndex, weights, weightsDerivative
    // on the stack.
    // Slower, but safer.
    vnl_matrix<long>          evaluateIndex(ImageDimension, ( m_SplineOrder + 1 ));
    vnl_matrix<double>        weights(ImageDimension, ( m_SplineOrder + 1 ));
    vnl_matrix<double>        weightsDerivative(ImageDimension, ( m_SplineOrder + 1));

    // Pass evaluateIndex, weights, weightsDerivative by reference. They're only good
    // as long as this method is in scope.
    return this->EvaluateDerivativeAtContinuousIndexInternal( x,
                                                              evaluateIndex,
                                                              weights,
                                                              weightsDerivative );
    }

  CovariantVectorType EvaluateDerivativeAtContinuousIndex(
                                         const ContinuousIndexType & x,
                                         unsigned int threadID ) const;

  void EvaluateValueAndDerivative( const PointType & point,
                                   OutputType & value,
                                   CovariantVectorType & deriv ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );

    // No thread info passed in, so call method that doesn't need thread ID.
    this->EvaluateValueAndDerivativeAtContinuousIndex( index,
                                                       value,
                                                       deriv );
    }

  void EvaluateValueAndDerivative( const PointType & point,
                                   OutputType & value,
                                   CovariantVectorType & deriv,
                                   unsigned int threadID ) const
    {
    ContinuousIndexType index;
    this->GetInputImage()->TransformPhysicalPointToContinuousIndex( point,
                                                                    index );
    this->EvaluateValueAndDerivativeAtContinuousIndex( index,
                                                       value,
                                                       deriv,
                                                       threadID );
    }

  void EvaluateValueAndDerivativeAtContinuousIndex(
                                                const ContinuousIndexType & x,
                                                OutputType & value,
                                                CovariantVectorType & deriv
                                                ) const
    {
    // Don't know thread information, make evaluateIndex, weights, weightsDerivative
    // on the stack.
    // Slower, but safer.
    vnl_matrix<long>          evaluateIndex(ImageDimension, ( m_SplineOrder + 1 ));
    vnl_matrix<double>        weights(ImageDimension, ( m_SplineOrder + 1 ));
    vnl_matrix<double>        weightsDerivative(ImageDimension, ( m_SplineOrder + 1));

    // Pass evaluateIndex, weights, weightsDerivative by reference. They're only good
    // as long as this method is in scope.
    this->EvaluateValueAndDerivativeAtContinuousIndexInternal(x,
                                                              value,
                                                              deriv,
                                                              evaluateIndex,
                                                              weights,
                                                              weightsDerivative );
    }

  void EvaluateValueAndDerivativeAtContinuousIndex(
                                                const ContinuousIndexType & x,
                                                OutputType & value,
                                                CovariantVectorType & deriv,
                                                unsigned int threadID ) const;


  /** Get/Sets the Spline Order, supports 0th - 5th order splines. The default
   *  is a 3rd order spline. */
  void SetSplineOrder(unsigned int SplineOrder);
  itkGetConstMacro(SplineOrder, int);

  void SetNumberOfThreads(unsigned int numThreads);
  itkGetConstMacro(NumberOfThreads, int);

  /** Set the input image.  This must be set by the user. */
  virtual void SetInputImage(const TImageType * inputData);


  /** The UseImageDirection flag determines whether image derivatives are
   * computed with respect to the image grid or with respect to the physical
   * space. When this flag is ON the derivatives are computed with respect to
   * the coodinate system of physical space. The difference is whether we take
   * into account the image Direction or not. The flag ON will take into
   * account the image direction and will result in an extra matrix
   * multiplication compared to the amount of computation performed when the
   * flag is OFF.
   * The default value of this flag is the same as the CMAKE option
   * ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE (i.e ON by default when
   * ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE is ON, and  OFF by default
   * when ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE is OFF). */
  itkSetMacro( UseImageDirection, bool );
  itkGetConstMacro( UseImageDirection, bool );
  itkBooleanMacro( UseImageDirection );


protected:

  /** The following methods take working space (evaluateIndex, weights, weightsDerivative)
   *  that is managed by the caller. If threadID is known, the working variables are looked
   *  up in the thread indexed arrays. If threadID is not known, working variables are made
   *  on the stack and passed to these methods. The stack allocation should be ok since
   *  these methods do not store the working variables, i.e. they are not expected to
   *  be available beyond the scope of the function call.
   *
   *  This was done to allow for two types of re-entrancy. The first is when a threaded
   *  filter, e.g. InterpolateImagePointsFilter calls EvaluateAtContinuousIndex from multiple
   *  threads without passing a threadID. So, EvaluateAtContinuousIndex must be thread safe.
   *  This is handled with the stack-based allocation of the working space.
   *
   *  The second form of re-entrancy involves methods that call EvaluateAtContinuousIndex
   *  from multiple threads, but pass a threadID. In this case, we can gain a little efficiency
   *  (hopefully) by looking up pre-allocated working space in arrays that are indexed by thread.
   *  The efficiency gain is likely dependent on the size of the working variables, which are
   *  in-turn dependent on the dimensionality of the image and the order of the spline.
   */
  virtual OutputType EvaluateAtContinuousIndexInternal( const ContinuousIndexType & index,
                                                        vnl_matrix<long>& evaluateIndex,
                                                        vnl_matrix<double>& weights) const;

  virtual void EvaluateValueAndDerivativeAtContinuousIndexInternal( const ContinuousIndexType & x,
                                                       OutputType & value,
                                                       CovariantVectorType & derivativeValue,
                                                       vnl_matrix<long>& evaluateIndex,
                                                       vnl_matrix<double>& weights,
                                                       vnl_matrix<double>& weightsDerivative
                                                       ) const;

  virtual CovariantVectorType EvaluateDerivativeAtContinuousIndexInternal( const ContinuousIndexType & x,
                                                                           vnl_matrix<long>& evaluateIndex,
                                                                           vnl_matrix<double>& weights,
                                                                           vnl_matrix<double>& weightsDerivative
                                                                           ) const;


  BSplineInterpolateImageFunction();
  ~BSplineInterpolateImageFunction();
  void PrintSelf(std::ostream& os, Indent indent) const;

  // These are needed by the smoothing spline routine.
  // temp storage for processing of Coefficients
  std::vector<CoefficientDataType>    m_Scratch;
  // Image size
  typename TImageType::SizeType       m_DataLength;
  // User specified spline order (3rd or cubic is the default)
  unsigned int                        m_SplineOrder;

  // Spline coefficients
  typename CoefficientImageType::ConstPointer       m_Coefficients;

private:
  BSplineInterpolateImageFunction( const Self& ); //purposely not implemented
  void operator=( const Self& ); //purposely not implemented

  /** Determines the weights for interpolation of the value x */
  void SetInterpolationWeights( const ContinuousIndexType & x,
                                const vnl_matrix<long> & EvaluateIndex,
                                vnl_matrix<double> & weights,
                                unsigned int splineOrder ) const;

  /** Determines the weights for the derivative portion of the value x */
  void SetDerivativeWeights( const ContinuousIndexType & x,
                             const vnl_matrix<long> & EvaluateIndex,
                             vnl_matrix<double> & weights,
                             unsigned int splineOrder ) const;

  /** Precomputation for converting the 1D index of the interpolation
   *  neighborhood to an N-dimensional index. */
  void GeneratePointsToIndex(  );

  /** Determines the indicies to use give the splines region of support */
  void DetermineRegionOfSupport( vnl_matrix<long> & evaluateIndex,
                                 const ContinuousIndexType & x,
                                 unsigned int splineOrder ) const;

  /** Set the indicies in evaluateIndex at the boundaries based on mirror
    * boundary conditions. */
  void ApplyMirrorBoundaryConditions(vnl_matrix<long> & evaluateIndex,
                                     unsigned int splineOrder) const;


  Iterator                  m_CIterator;    // Iterator for traversing spline coefficients.
  unsigned long             m_MaxNumberInterpolationPoints; // number of neighborhood points used for interpolation
  std::vector<IndexType>    m_PointsToIndex;  // Preallocation of interpolation neighborhood indicies

  CoefficientFilterPointer     m_CoefficientFilter;

  // flag to take or not the image direction into account when computing the
  // derivatives.
  bool m_UseImageDirection;

  unsigned int         m_NumberOfThreads;
  vnl_matrix<long>   * m_ThreadedEvaluateIndex;
  vnl_matrix<double> * m_ThreadedWeights;
  vnl_matrix<double> * m_ThreadedWeightsDerivative;
};

} // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkOptBSplineInterpolateImageFunction.txx"
#endif

#endif