This file is indexed.

/usr/include/InsightToolkit/Review/itkNeuralNetworkFileWriter.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    itkNeuralNetworkFileWriter.txx
Language:  C++
Date:      $Date$
Version:   $Revision$

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkNeuralNetworkFileWriter_txx
#define __itkNeuralNetworkFileWriter_txx

#include <itksys/ios/sstream>
#include "itkNeuralNetworkFileWriter.h"

namespace itk
{

/** Constructor */
template<class TNetwork>
NeuralNetworkFileWriter<TNetwork>
::NeuralNetworkFileWriter()
{
  this->m_FileName = "";
  this->m_WriteWeightValuesType = Self::BINARY; //Default: binary output
}


template<class TNetwork>
void
NeuralNetworkFileWriter<TNetwork>
//Avoiding VS6 error::SetInput( const TNetwork* network )
::SetInput(  TNetwork* network )
{
  this->m_Network = network;
}


/** Destructor */
template<class TNetwork>
NeuralNetworkFileWriter<TNetwork>
::~NeuralNetworkFileWriter()
{
  this->ClearFields();
}


template<class TNetwork>
void
NeuralNetworkFileWriter<TNetwork>
::ClearFields()
{
  for (FieldsContainerType::size_type i = 0; i <  this->m_Fields.size(); i++)
    {
    delete  this->m_Fields[i];
    }
  this->m_Fields.clear();
}

template<class TNetwork>
void
NeuralNetworkFileWriter<TNetwork>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  Superclass::PrintSelf( os, indent );
}


template<class TNetwork>
const TNetwork *
NeuralNetworkFileWriter<TNetwork>
::GetInput() const
{
  return  this->m_Network.GetPointer();
}

/** Update the Writer */
template<class TNetwork>
void
NeuralNetworkFileWriter<TNetwork>
::Update()
{
  this->m_OutputFile.open( this->m_FileName.c_str(), std::ios::binary | std::ios::out);

  if(!this->m_OutputFile.is_open())
    {
    itkExceptionMacro("NeuralNetworkFileReader Write: Cannot open file");
    return;
    }

  MET_FieldRecordType * mF;
  mF = new MET_FieldRecordType;
  if(MET_SystemByteOrderMSB())
    {
    MET_InitWriteField(mF, "BinaryDataByteOrderMSB", MET_STRING,
      strlen("True"), "True");
    }
  else
    {
    MET_InitWriteField(mF, "BinaryDataByteOrderMSB", MET_STRING,
      strlen("False"), "False");
    }
  this->m_Fields.push_back(mF);

  mF = new MET_FieldRecordType;
  MET_InitWriteField(mF, "ObjectType", MET_STRING,
    strlen( this->m_Network->GetNameOfClass()), this->m_Network->GetNameOfClass());

  this->m_Fields.push_back(mF);

  mF = new MET_FieldRecordType;
  MET_InitWriteField(mF, "NLayers", MET_UINT, this->m_Network->GetNumOfLayers());
  this->m_Fields.push_back(mF);

  mF = new MET_FieldRecordType;
  MET_InitWriteField(mF, "NWeightSets",
    MET_UINT, this->m_Network->GetNumOfWeightSets());
  this->m_Fields.push_back(mF);

  std::cout<<"Num of Weights = "<< this->m_Network->GetNumOfWeightSets()<<std::endl;
  mF = new MET_FieldRecordType;
  MET_InitWriteField(mF, "WeightValuesType", MET_UINT, this->m_WriteWeightValuesType);
  mF->terminateRead=true;
  this->m_Fields.push_back(mF);

  if(!MET_Write(this->m_OutputFile, &  this->m_Fields,'='))
    {
    itkExceptionMacro("MetaObject: Write: MET_Write Failed");
    }

  this->ClearFields();

  //Get Layer Information for each layer
  for(int i=0; i< this->m_Network->GetNumOfLayers(); i++)
    {
    LayerBaseConstPointer layerPtr = this->m_Network->GetLayer(i);
    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "Layer_Id", MET_INT, i);
    this->m_Fields.push_back(mF);

    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "NumNodes", MET_INT, layerPtr->GetNumberOfNodes());
    this->m_Fields.push_back(mF);

    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "LayerType", MET_STRING,
      strlen(layerPtr->GetNameOfClass ()), layerPtr->GetNameOfClass ());
    this->m_Fields.push_back(mF);

    typename TNetwork::TransferFunctionInterfaceType::ConstPointer tf = layerPtr->GetActivationFunction();
      {
      mF = new MET_FieldRecordType;
      if (tf.IsNotNull())
        {
        MET_InitWriteField(mF, "TransferFunction", MET_STRING,
          strlen(tf->GetNameOfClass()), tf->GetNameOfClass());
        }
      else
        {
        MET_InitWriteField(mF, "TransferFunction", MET_STRING,
          strlen("NULL"), "NULL");
        }
      this->m_Fields.push_back(mF);
      }

    //NOTE:  One and Two HiddenLayerBackpropogation networks don't have InputFunction Nodes.
    typename TNetwork::InputFunctionInterfaceType::ConstPointer inputf = layerPtr->GetNodeInputFunction();
      {
      mF = new MET_FieldRecordType;
      if ( inputf.IsNotNull() )
        {
        MET_InitWriteField(mF, "InputFunction", MET_STRING,
          strlen(inputf->GetNameOfClass()), inputf->GetNameOfClass());
        }
      else
        {
        MET_InitWriteField(mF, "InputFunction", MET_STRING,
          strlen("NULL"), "NULL");
        }
      mF->terminateRead=true;
      this->m_Fields.push_back(mF);
      }
    }

  if(!MET_Write(this->m_OutputFile, &  this->m_Fields,'='))
    {
    itkExceptionMacro("MetaObject: Write: MET_Write Failed");
    }

  this->ClearFields();
  for(int j=0; j< this->m_Network->GetNumOfWeightSets(); j++)
    {
    //typename Statistics::WeightSetBase<typename TNetwork::MeasurementVectorType, typename TNetwork::TargetVectorType>::ConstPointer
    const typename TNetwork::LayerInterfaceType::WeightSetInterfaceType * const
      weightset =  this->m_Network->GetWeightSet(j);
    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "WeightSet_Id", MET_INT,weightset->GetWeightSetId());
    this->m_Fields.push_back(mF);

    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "WeightSetType", MET_STRING,
      strlen(weightset->GetNameOfClass ()),weightset->GetNameOfClass ());
    this->m_Fields.push_back(mF);

    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "SRC_Layer", MET_INT,weightset->GetInputLayerId());
    this->m_Fields.push_back(mF);

    mF = new MET_FieldRecordType;
    MET_InitWriteField(mF, "DEST_Layer", MET_INT,weightset->GetOutputLayerId());
    this->m_Fields.push_back(mF);
    }

  if(!MET_Write(this->m_OutputFile, &  this->m_Fields,'='))
    {
    itkExceptionMacro("MetaObject: Write: MET_Write Failed");
    }

  //Writeout the weight values
  this->ClearFields();
  for(int j=0; j< this->m_Network->GetNumOfWeightSets(); j++)
    {
    //typename Statistics::WeightSetBase<typename TNetwork::MeasurementVectorType, typename TNetwork::TargetVectorType>::ConstPointer
    const typename TNetwork::LayerInterfaceType::WeightSetInterfaceType * const
      weightset =  this->m_Network->GetWeightSet(j);
    unsigned int rows = weightset->GetNumberOfOutputNodes();
    unsigned int cols = weightset->GetNumberOfInputNodes();
    switch(this->m_WriteWeightValuesType)
      {
      //ASCII only works for very small networks (i.e. less than 256 weights),
      //and the MetaIO mechanism is not desigend for the way that this is used
      //to write these files out.
      // Comment this code out until it can be robustly written.
      case ASCII:
        {
        // create local scope
          {
          std::cout << "UNSUPPORTED: ASCII only works for very small network types" << std::endl;
          mF = new MET_FieldRecordType;
          MET_InitWriteField(mF, "WeightValues", MET_FLOAT_ARRAY,
            weightset->GetNumberOfOutputNodes()*weightset->GetNumberOfInputNodes(),
            weightset->GetWeightValues());
          this->m_Fields.push_back(mF);
          }
        // create local scope
          {
          if(!MET_Write(this->m_OutputFile, &  this->m_Fields,'='))
            {
            itkExceptionMacro("MetaObject: Write: MET_Write Failed");
            return;
            }
          }
        }
        break;
      case BINARY:
        {
        //
        // TODO: This is hardcoded to double for the weight values.
        // Do the ITK Neural Nets allow single precision NN?
        this->m_OutputFile.write( (char *)weightset->GetWeightValues(),
          rows * cols * sizeof(double));
        }
        break;
      default:
        itkExceptionMacro("Unsupported type given");
        break;
      }
    }
}


} // namespace itk

#endif