This file is indexed.

/usr/include/InsightToolkit/Review/itkLabelPerimeterEstimationCalculator.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkLabelPerimeterEstimationCalculator.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

    This software is distributed WITHOUT ANY WARRANTY; without even 
    the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
    PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkLabelPerimeterEstimationCalculator_txx
#define __itkLabelPerimeterEstimationCalculator_txx

#include "itkLabelPerimeterEstimationCalculator.h"
#include "itkProgressReporter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkShapedNeighborhoodIterator.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkConstantBoundaryCondition.h"
#include "itkSize.h"
#include "itkConnectedComponentAlgorithm.h"
#include <set>

namespace itk {

template <class TInputImage>
LabelPerimeterEstimationCalculator<TInputImage>
::LabelPerimeterEstimationCalculator()
{
  m_FullyConnected = false;
}


template<class TInputImage>
void
LabelPerimeterEstimationCalculator<TInputImage>
::Compute()
{
  
  m_Perimeters.clear();
  
  // ProgressReporter progress( this, 0, this->GetImage()->GetRequestedRegion().GetNumberOfPixels() );
  
  // reduce the region to avoid reading outside
  RegionType region = this->GetImage()->GetRequestedRegion();
  SizeType size = region.GetSize();
  for( int i=0; i<ImageDimension; i++ )
    {
    size[i]--;
    }
  region.SetSize( size );

  // the radius which will be used for all the shaped iterators
  Size< ImageDimension > radius;
  radius.Fill(1);

  // set up the iterator
  typedef ConstShapedNeighborhoodIterator<InputImageType> IteratorType;
  typename IteratorType::ConstIterator nIt;
  IteratorType iIt( radius, this->GetImage(), region );
  // we want to search the neighbors with offset >= 0
  // 2D -> 4 neighbors
  // 3D -> 8 neighbors
  typename IteratorType::OffsetType offset;
  unsigned int centerIndex = iIt.GetCenterNeighborhoodIndex();
  // store the offsets to reuse them to evaluate the contributions of the
  // configurations
  typename std::vector< IndexType > indexes;
  IndexType idx0;
  idx0.Fill( 0 );
  for( unsigned int d=centerIndex; d < 2*centerIndex+1; d++ )
    {
    offset = iIt.GetOffset( d );
    bool deactivate = false;
    for ( int j=0; j<ImageDimension && !deactivate; j++ )
      {
      if( offset[j] < 0 )
        {
        deactivate = true;
        }
      }
    if( deactivate )
      {
      iIt.DeactivateOffset( offset );
      }
    else
      {
      iIt.ActivateOffset( offset );
      indexes.push_back( idx0 + offset );
      }

    }
  
  // to store the configurations count for all the labels
  typedef typename std::map< unsigned long, unsigned long > MapType;
  typedef typename std::map< InputImagePixelType, MapType > LabelMapType;
  LabelMapType confCount;

  for( iIt.GoToBegin(); !iIt.IsAtEnd(); ++iIt )
    {
    // 2 pass - find the labels in the neighborhood
    //        - count the configurations for all the labels

    typedef typename std::set< InputImagePixelType > LabelSetType;
    LabelSetType labelSet;
    for ( nIt= iIt.Begin();
      nIt != iIt.End();
      nIt++ )
      {
      labelSet.insert( nIt.Get() );
      }

    for( typename LabelSetType::const_iterator it = labelSet.begin();
      it != labelSet.end();
      it++ )
      {

      unsigned long conf = 0;
      int i=0;

      for ( nIt= iIt.Begin();
        nIt != iIt.End();
        nIt++, i++ )
        {
        if( nIt.Get() == *it )
          {
          conf += 1 << i;
          }
        }

      confCount[ *it ][ conf ]++;

      }

    // progress.CompletedPixel();

    }

  // compute the participation to the perimeter for all the configurations
  double physicalSize = 1;
  for( int i=0; i<ImageDimension; i++ )
    {
    physicalSize *= this->GetImage()->GetSpacing()[i];
    }
  typedef typename std::map< unsigned long, double > ContributionMapType;
  ContributionMapType contributions;
  int numberOfNeighbors = (int)vcl_pow( 2.0, ImageDimension );
  int numberOfConfigurations = (int)vcl_pow( 2.0, numberOfNeighbors );
  // create an image to store the neighbors
  typedef typename itk::Image< bool, ImageDimension > ImageType;
  typename ImageType::Pointer neighborsImage = ImageType::New();
  // typename ImageType::SizeType size;
  size.Fill( 2 );
  neighborsImage->SetRegions( size );
  neighborsImage->Allocate();
  for( int i=0; i<numberOfConfigurations; i++ )
    {
    neighborsImage->FillBuffer( false );
    for( int j=0; j<numberOfNeighbors; j++ )
      {
      if( i & 1 << j )
        {
        neighborsImage->SetPixel( indexes[ j ], true );
        }
      }
    // the image is created - we can now compute the contributions of the pixels
    // for that configuration
    contributions[i] = 0;
    for( int j=0; j<numberOfNeighbors; j++ )
      {
      IndexType currentIdx = indexes[j];
      if( neighborsImage->GetPixel( currentIdx ) )
        {
        for( int k=0; k<ImageDimension; k++ )
          {
          IndexType idx = currentIdx;
          idx[k] = vcl_abs( idx[k] - 1 );
          if( !neighborsImage->GetPixel( idx ) )
            {
            contributions[i] += physicalSize / this->GetImage()->GetSpacing()[k] / 2.0;
            }
          }
        }
      }
    contributions[i] /= ImageDimension;
    }


  // and use those contributions to found the perimeter
  m_Perimeters.clear();
  for( typename LabelMapType::const_iterator it = confCount.begin();
    it != confCount.end();
    it++ )
    {
    m_Perimeters[ it->first ] = 0;
    for( typename MapType::const_iterator it2 = it->second.begin();
      it2 != it->second.end();
      it2++ )
      {
      m_Perimeters[ it->first ] += contributions[ it2->first ] * it2->second;
      }
    }

}


template<class TInputImage>
void
LabelPerimeterEstimationCalculator<TInputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  
  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
}
  
}// end namespace itk
#endif