This file is indexed.

/usr/include/InsightToolkit/Review/itkGaussianDerivativeOperator.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianDerivativeOperator.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkGaussianDerivativeOperator_h
#define __itkGaussianDerivativeOperator_h

#include "itkNeighborhoodOperator.h"
#include "itkGaussianOperator.h"
#include "itkDerivativeOperator.h"
#include <math.h>

namespace itk {

/**
 * \class GaussianDerivativeOperator
 * \brief A NeighborhoodOperator whose coefficients are a one dimensional,
 * discrete derivative Gaussian kernel.
 *
 * GaussianDerivativeOperator can be used to calculate Gaussian derivatives
 * by taking its inner product with to a Neighborhood
 * (NeighborhooIterator) that is swept across an image region.
 * It is a directional operator.  N successive applications
 * oriented along each dimensional direction will calculate separable,
 * efficient, N-D Gaussian derivatives of an image region.
 *
 * GaussianDerivativeOperator takes three parameters:
 *
 * (1) The floating-point variance of the desired Gaussian function.
 *
 * (2) The order of the derivative to be calculated (zero order means 
 *     it performs only smoothing as a standard itk::GaussianOperator)
 *
 * (3) The "maximum error" allowed in the discrete Gaussian
 * function.  "Maximum errror" is defined as the difference between the area
 * under the discrete Gaussian curve and the area under the continuous
 * Gaussian. Maximum error affects the Gaussian operator size. Care should
 * be taken not to make this value too small relative to the variance
 * lest the operator size become unreasonably large.
 *
 * References:
 * The Gaussian kernel contained in this operator was described
 * by Tony Lindeberg  (Discrete Scale-Space Theory and the Scale-Space
 * Primal Sketch. Dissertation. Royal Institute of Technology, Stockholm,
 * Sweden. May 1991.).
 *
 * \author Ivan Macia, VICOMTech, Spain, http://www.vicomtech.es
 *
 * This implementation was taken from the Insight Journal paper:
 * http://hdl.handle.net/1926/1290
 *
 * \sa GaussianOperator
 * \sa NeighborhoodOperator
 * \sa NeighborhoodIterator
 * \sa Neighborhood
 *
 * \ingroup Operators
 */
template<class TPixel,unsigned int VDimension=2,
  class TAllocator = NeighborhoodAllocator<TPixel> >
class ITK_EXPORT GaussianDerivativeOperator
  : public NeighborhoodOperator<TPixel, VDimension, TAllocator>
{
public:
  /** Standard class typedefs. */
  typedef GaussianDerivativeOperator                            Self;
  typedef NeighborhoodOperator<TPixel, VDimension, TAllocator>  Superclass;
  
  /** Neighborhood operator types. */
  typedef GaussianOperator<TPixel, VDimension, TAllocator>      GaussianOperatorType;
  typedef DerivativeOperator<TPixel, VDimension, TAllocator>    DerivativeOperatorType;
  
  /** Constructor. */
  GaussianDerivativeOperator()
    {
    m_Order = 1;
    m_Variance = 1.0;
    m_Spacing = 1.0;
    m_MaximumError = 0.005;
    m_MaximumKernelWidth = 30;
    m_UseDerivativeOperator = false;
    m_NormalizeAcrossScale = true;
    }

  /** Copy constructor */
  GaussianDerivativeOperator(const Self &other) :
    NeighborhoodOperator<TPixel, VDimension, TAllocator>(other)
    {
    m_UseDerivativeOperator = other.m_UseDerivativeOperator;
    m_NormalizeAcrossScale = other.m_NormalizeAcrossScale;
    m_Spacing = other.m_Spacing;
    m_Order = other.m_Order;
    m_Variance = other.m_Variance;
    m_MaximumError = other.m_MaximumError;
    m_MaximumKernelWidth = other.m_MaximumKernelWidth;
    }

  /** Assignment operator */
  Self &operator=(const Self &other)
    {
    Superclass::operator=(other);
    m_UseDerivativeOperator = other.m_UseDerivativeOperator;
    m_NormalizeAcrossScale = other.m_NormalizeAcrossScale;
    m_Spacing = other.m_Spacing;
    m_Order = other.m_Order;
    m_Variance = other.m_Variance;
    m_MaximumError = other.m_MaximumError;
    m_MaximumKernelWidth = other.m_MaximumKernelWidth;
    return *this;
    }

  /** Set/Get the flag for choosing the implementation. If we choose
   * to use itk::DerivativeOperator, then the derivative Gaussian kernel
   * is calculated as a convolution with the itk::DerivativeOperator of
   * the desired order. Otherwise a polynomial is computed analitically
   * for the derivative of the Gaussian. */
  void SetUseDerivativeOperator( bool flag )
    {
    if( m_UseDerivativeOperator != flag )
      {
      m_UseDerivativeOperator = flag;
      }
    }
  bool GetUseDerivativeOperator() const { return m_UseDerivativeOperator; }
  itkBooleanMacro(UseDerivativeOperator);

  /** Set/Get the flag for calculating scale-space normalized derivatives.
    * Normalized derivatives are obtained multiplying by the scale parameter t. */
  void SetNormalizeAcrossScale( bool flag )
    {
    if( m_NormalizeAcrossScale != flag )
      {
      m_NormalizeAcrossScale = flag;
      }
    }
  bool GetNormalizeAcrossScale() const { return m_NormalizeAcrossScale; }
  itkBooleanMacro(NormalizeAcrossScale);
  
  /** Sets the desired variance of the Gaussian kernel. */
  void SetVariance(const double variance) { m_Variance = variance; }
  
  /** Sets the spacing for the direction of this kernel. */
  void SetSpacing(const double spacing)
    {  
    m_Spacing = spacing;
    }

  /** Sets the desired maximum error of the gaussian approximation.  Maximum
   * error is the difference between the area under the discrete Gaussian curve
   * and the area under the continuous Gaussian. Maximum error affects the
   * Gaussian operator size. The value is clamped between 0.00001 and 0.99999. */
  void SetMaximumError( const double maxerror )
    {
    const double Min = 0.00001;
    const double Max = 1.0 - Min;
    m_MaximumError = (maxerror<Min?Min:(maxerror>Max?Max:maxerror));
    }
  
  /** Returns the variance of the Gaussian (scale) for the operator. */
  double GetVariance() { return m_Variance; }

  /** Returns the maximum error of the gaussian approximation.  Maximum error is 
   * the difference between the area under the discrete Gaussian curve and the
   * area under the continuous Gaussian. Maximum error affects the Gaussian
   * operator size. */
  double GetMaximumError() { return m_MaximumError; }

  /** Sets a limit for growth of the kernel.  Small maximum error values with
   *  large variances will yield very large kernel sizes.  This value can be
   *  used to truncate a kernel in such instances.  A warning will be given on
   *  truncation of the kernel. */
  void SetMaximumKernelWidth( unsigned int n )
    {
    m_MaximumKernelWidth = n;
    }

  /** Returns the maximum allowed kernel width. */
  unsigned int GetMaximumKernelWidth() const { return m_MaximumKernelWidth; }
   
  /** Sets the order of the derivative. */
  void SetOrder(const unsigned int order)
    {
    m_Order = order;
    }

  /** Returns the order of the derivative. */
  unsigned int GetOrder() const { return m_Order; }

  /** Prints some debugging information. */
  virtual void PrintSelf(std::ostream &os, Indent i) const
    {
    os << i << "GaussianDerivativeOperator { this=" << this
       << ", m_UseDerivativeOperator = " << m_UseDerivativeOperator
       << ", m_NormalizeAcrossScale = " << m_NormalizeAcrossScale
       << ", m_Order = " << m_Order
       << ", m_Spacing = " << m_Spacing
       << ", m_Variance = " << m_Variance
       << ", m_MaximumError = " << m_MaximumError
       << ", m_MaximumKernelWidth = " << m_MaximumKernelWidth
       << "} "  << std::endl;
    Superclass::PrintSelf(os, i.GetNextIndent());
    }

protected:

  typedef typename Superclass::CoefficientVector CoefficientVector;

  /** Returns the value of the modified Bessel function I0(x) at a point x >= 0. */
  double ModifiedBesselI0(double);

  /** Returns the value of the modified Bessel function I1(x) at a point x,
   * x real.  */
  double ModifiedBesselI1(double);

  /** Returns the value of the modified Bessel function Ik(x) at a point x>=0,
   * where k>=2. */
  double ModifiedBesselI(int, double);

  /** Calculates operator coefficients. */
  CoefficientVector GenerateCoefficients();

  /** Arranges coefficients spatially in the memory buffer. */
  void Fill(const CoefficientVector& coeff)
    { this->FillCenteredDirectional(coeff); }

private:

  /** For compatibility with itkWarningMacro */
  const char *GetNameOfClass()
    { return "itkGaussianDerivativeOperator"; }

  /** Flag to set if the implementation uses the itk::DerivativeOperator. */
  bool m_UseDerivativeOperator;

  /** Normalize derivatives across scale space */
  bool m_NormalizeAcrossScale;

  /** Desired variance of the discrete Gaussian function. */
  double m_Variance;

  /** Difference between the areas under the curves of the continuous and
   * discrete Gaussian functions. */
  double m_MaximumError;

  /** Maximum kernel size allowed.  This value is used to truncate a kernel 
   *  that has grown too large.  A warning is given when the specified maximum
   *  error causes the kernel to exceed this size. */
  unsigned int m_MaximumKernelWidth;

  /** Order of the derivative. */
  unsigned int m_Order; 

  /** Spacing in the direction of this kernel. */
  double m_Spacing;
};

} // namespace itk

// Define instantiation macro for this template.
#define ITK_TEMPLATE_GaussianDerivativeOperator(_, EXPORT, x, y) namespace itk { \
  _(2(class EXPORT GaussianDerivativeOperator< ITK_TEMPLATE_2 x >)) \
  namespace Templates { typedef GaussianDerivativeOperator< ITK_TEMPLATE_2 x > \
                                                  GaussianDerivativeOperator##y; } \
  }

#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkGaussianDerivativeOperator+-.h"
#endif

#if ITK_TEMPLATE_TXX
# include "itkGaussianDerivativeOperator.txx"
#endif

#endif