/usr/include/InsightToolkit/Review/itkCoxDeBoorBSplineKernelFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCoxDeBoorBSplineKernelFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCoxDeBoorBSplineKernelFunction_txx
#define __itkCoxDeBoorBSplineKernelFunction_txx
#include "itkCoxDeBoorBSplineKernelFunction.h"
namespace itk
{
/**
* \author Nicholas J. Tustison
*
* Contributed by Nicholas J. Tustison, James C. Gee
* in the Insight Journal paper:
* http://hdl.handle.net/1926/140
*
*/
template <unsigned int VSplineOrder>
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::CoxDeBoorBSplineKernelFunction()
{
this->m_SplineOrder = VSplineOrder;
this->GenerateBSplineShapeFunctions( this->m_SplineOrder+1 );
}
template <unsigned int VSplineOrder>
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::~CoxDeBoorBSplineKernelFunction()
{
}
template <unsigned int VSplineOrder>
void
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::SetSplineOrder( unsigned int order )
{
if ( order != this->m_SplineOrder )
{
this->m_SplineOrder = order;
this->GenerateBSplineShapeFunctions( this->m_SplineOrder+1 );
this->Modified();
}
}
template <unsigned int VSplineOrder>
void
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::GenerateBSplineShapeFunctions( unsigned int order )
{
unsigned int NumberOfPieces = static_cast<unsigned int>( 0.5*( order+1 ) );
this->m_BSplineShapeFunctions.set_size( NumberOfPieces, order );
VectorType knots( order+1 );
for( unsigned int i = 0; i < knots.size(); i++)
{
knots[i] = -0.5*static_cast<RealType>( order ) + static_cast<RealType>( i );
}
for ( unsigned int i = 0; i < NumberOfPieces; i++ )
{
PolynomialType poly = this->CoxDeBoor(order, knots,
0, static_cast<unsigned int>( 0.5*( order ) ) + i );
this->m_BSplineShapeFunctions.set_row( i, poly.coefficients() );
}
}
template <unsigned int VSplineOrder>
typename CoxDeBoorBSplineKernelFunction<VSplineOrder>::PolynomialType
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::CoxDeBoor( unsigned short order, VectorType knots,
unsigned int whichBasisFunction, unsigned int whichPiece )
{
VectorType tmp(2);
PolynomialType poly1(0.0), poly2(0.0);
RealType den;
unsigned short p = order-1;
unsigned short i = whichBasisFunction;
if( p == 0 && whichBasisFunction == whichPiece )
{
PolynomialType poly(1.0);
return poly;
}
// Term 1
den = knots(i+p)-knots(i);
if ( den == NumericTraits<RealType>::Zero )
{
PolynomialType poly(0.0);
poly1 = poly;
}
else
{
tmp(0) = 1.0;
tmp(1) = -knots(i);
tmp /= den;
poly1 = PolynomialType(tmp) * this->CoxDeBoor( order-1, knots, i, whichPiece );
}
// Term 2
den = knots(i+p+1)-knots(i+1);
if ( den == NumericTraits<RealType>::Zero )
{
PolynomialType poly(0.0);
poly2 = poly;
}
else
{
tmp(0) = -1.0;
tmp(1) = knots(i+p+1);
tmp /= den;
poly2 = PolynomialType(tmp) * this->CoxDeBoor( order-1, knots, i+1, whichPiece );
}
return ( poly1 + poly2 );
}
template <unsigned int VSplineOrder>
typename CoxDeBoorBSplineKernelFunction<VSplineOrder>::MatrixType
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::GetShapeFunctionsInZeroToOneInterval()
{
int order = this->m_SplineOrder+1;
unsigned int NumberOfPieces = static_cast<unsigned int>( order );
MatrixType ShapeFunctions( NumberOfPieces, order );
VectorType knots( 2*order );
for( unsigned int i = 0; i < knots.size(); i++ )
{
knots[i] = -static_cast<RealType>( this->m_SplineOrder )
+ static_cast<RealType>( i );
}
for( unsigned int i = 0; i < NumberOfPieces; i++ )
{
PolynomialType poly = this->CoxDeBoor( order, knots, i, order-1 );
ShapeFunctions.set_row( i, poly.coefficients() );
}
return ShapeFunctions;
}
template <unsigned int VSplineOrder>
void
CoxDeBoorBSplineKernelFunction<VSplineOrder>
::PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Spline Order: " << this->m_SplineOrder << std::endl;
os << indent << "Piecewise Polynomial Pieces: " << std::endl;
RealType a = 0.0;
RealType b = 0.0;
for ( unsigned int i = 0; i < this->m_BSplineShapeFunctions.rows(); i++ )
{
os << indent << indent;
PolynomialType( this->m_BSplineShapeFunctions.get_row( i ) ).print( os );
if( i == 0 )
{
if( this->m_SplineOrder % 2 == 0 )
{
b = 0.5;
}
else
{
b = 1.0;
}
}
else
{
a = b;
b += 1.0;
}
os << ", X \\in [" << a << ", " << b << "]" << std::endl;
}
}
} // namespace itk
#endif
|