/usr/include/InsightToolkit/Review/itkCoxDeBoorBSplineKernelFunction.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCoxDeBoorBSplineKernelFunction.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCoxDeBoorBSplineKernelFunction_h
#define __itkCoxDeBoorBSplineKernelFunction_h
#include "itkKernelFunction.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_real_polynomial.h"
#include "vnl/vnl_matrix.h"
namespace itk
{
/** \class CoxDeBoorBSplineKernelFunction
* \brief BSpline kernel used for density estimation and nonparameteric
* regression.
*
* This class enscapsulates BSpline kernel for
* density estimation or nonparameteric regression.
* See documentation for KernelFunction for more details.
*
* This class is templated over the spline order to cohere with
* the previous incarnation of this class. One can change the
* order during an instantiation's existence. Note that
* other authors have defined the B-spline order as being the
* degree of spline + 1. In the ITK context (e.g. in this
* class), the spline order is equivalent to the degree of
* the spline.
*
* \author Nicholas J. Tustison
*
* Contributed by Nicholas J. Tustison, James C. Gee
* in the Insight Journal paper:
* http://hdl.handle.net/1926/140
*
*
* \sa KernelFunction
*
* \ingroup Functions
*/
template <unsigned int VSplineOrder = 3>
class ITK_EXPORT CoxDeBoorBSplineKernelFunction
: public KernelFunction
{
public:
/** Standard class typedefs. */
typedef CoxDeBoorBSplineKernelFunction Self;
typedef KernelFunction Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( CoxDeBoorBSplineKernelFunction, KernelFunction );
typedef double RealType;
typedef vnl_vector<RealType> VectorType;
typedef vnl_real_polynomial PolynomialType;
typedef vnl_matrix<RealType> MatrixType;
/** Get/Sets the Spline Order */
void SetSplineOrder( unsigned int );
itkGetConstMacro( SplineOrder, unsigned int );
/** Evaluate the function. */
inline RealType Evaluate( const RealType & u ) const
{
RealType absValue = vnl_math_abs( u );
unsigned int which;
if( this->m_SplineOrder % 2 == 0 )
{
which = static_cast<unsigned int>( absValue+0.5 );
}
else
{
which = static_cast<unsigned int>( absValue );
}
if( which < this->m_BSplineShapeFunctions.rows() )
{
return PolynomialType(
this->m_BSplineShapeFunctions.get_row( which ) ).evaluate( absValue );
}
else
{
return NumericTraits<RealType>::Zero;
}
}
/** Evaluate the first derivative. */
inline RealType EvaluateDerivative( const double & u ) const
{
return this->EvaluateNthDerivative( u, 1 );
}
/** Evaluate the Nth derivative. */
inline RealType EvaluateNthDerivative( const double & u, unsigned int n ) const
{
RealType absValue = vnl_math_abs( u );
unsigned int which;
if( this->m_SplineOrder % 2 == 0 )
{
which = static_cast<unsigned int>( absValue+0.5 );
}
else
{
which = static_cast<unsigned int>( absValue );
}
if( which < this->m_BSplineShapeFunctions.rows() )
{
PolynomialType polynomial(
this->m_BSplineShapeFunctions.get_row( which ) );
for( unsigned int i = 0; i < n; i++ )
{
polynomial = polynomial.derivative();
}
RealType der = polynomial.evaluate( absValue );
if( u < NumericTraits<RealType>::Zero && n % 2 != 0 )
{
return -der;
}
else
{
return der;
}
}
else
{
return NumericTraits<RealType>::Zero;
}
}
/**
* For a specific order, return the ceil( 0.5*(m_SplineOrder+1) )
* pieces of the single basis function centered at zero for positive
* parametric values.
*/
MatrixType GetShapeFunctions()
{
return this->m_BSplineShapeFunctions;
}
/**
* For a specific order, generate and return the (this->m_SplineOrder+1)
* pieces of the different basis functions in the [0, 1] interval.
*/
MatrixType GetShapeFunctionsInZeroToOneInterval();
protected:
CoxDeBoorBSplineKernelFunction();
~CoxDeBoorBSplineKernelFunction();
void PrintSelf( std::ostream& os, Indent indent ) const;
private:
CoxDeBoorBSplineKernelFunction( const Self& ); //purposely not implemented
void operator=( const Self& ); //purposely not implemented
/**
* For a specific order, generate the (this->m_SplineOrder+1) pieces of
* the single basis function centered at zero.
*/
void GenerateBSplineShapeFunctions( unsigned int );
/**
* Use the CoxDeBoor recursion relation to generate the piecewise
* polynomials which compose the basis function.
* See, for example, L. Piegl, L. Tiller, "The NURBS Book,"
* Springer 1997, p. 50.
*/
PolynomialType CoxDeBoor( unsigned short,
VectorType, unsigned int, unsigned int );
MatrixType m_BSplineShapeFunctions;
unsigned int m_SplineOrder;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCoxDeBoorBSplineKernelFunction.txx"
#endif
#endif
|