/usr/include/InsightToolkit/Review/itkAnchorOpenCloseLine.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkAnchorOpenCloseLine.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkAnchorOpenCloseLine_txx
#define __itkAnchorOpenCloseLine_txx
#include "itkAnchorOpenCloseLine.h"
namespace itk {
template <class TInputPix, class THistogramCompare, class TFunction1, class TFunction2>
AnchorOpenCloseLine<TInputPix, THistogramCompare, TFunction1, TFunction2>
::AnchorOpenCloseLine()
{
m_Size=2;
if (UseVectorBasedHistogram())
{
m_Histo = new VHistogram;
}
else
{
m_Histo = new MHistogram;
}
}
template <class TInputPix, class THistogramCompare, class TFunction1, class TFunction2>
void
AnchorOpenCloseLine<TInputPix, THistogramCompare, TFunction1, TFunction2>
::DoLine(InputImagePixelType * buffer, unsigned bufflength)
{
// TFunction1 will be >= for openings
// TFunction2 will be <=
// TFunction3 will be >
// the initial version will adopt the methodology of loading a line
// at a time into a buffer vector, carrying out the opening or
// closing, and then copy the result to the output. Hopefully this
// will improve cache performance when working along non raster
// directions.
if (bufflength <= m_Size/2)
{
// No point doing anything fancy - just look for the extreme value
// This is important for angled structuring elements
InputImagePixelType Extreme = buffer[0];
for (unsigned i = 0;i < bufflength;i++)
{
if (m_TF1(Extreme, buffer[i]))
Extreme = buffer[i];
}
for (unsigned i = 0;i < bufflength;i++)
{
buffer[i] = Extreme;
}
return;
}
m_Histo->Reset();
// start the real work - everything here will be done with index
// arithmetic rather than pointer arithmetic
unsigned outLeftP = 0, outRightP = bufflength - 1;
// left side
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
while ((outLeftP < outRightP) && m_TF1(buffer[outLeftP], buffer[outLeftP+1]))
{
++outLeftP;
}
while ((outLeftP < outRightP) && m_TF2(buffer[outRightP-1], buffer[outRightP]))
{
--outRightP;
}
InputImagePixelType Extreme;
while (StartLine(buffer, Extreme, *m_Histo, outLeftP, outRightP, bufflength))
{
}
FinishLine(buffer, Extreme, outLeftP, outRightP, bufflength);
// this section if to make the edge behaviour the same as the more
// traditional approaches. It isn't part of the core anchor method.
// Note that the index calculations include some extra factors that
// relate to the padding at either end to allow users to set
// borders.
// compat
// fix left border
Extreme = buffer[m_Size/2 + 1];
for (int i=m_Size/2;i>=0;i--)
{
assert(i >= 0);
if (m_TF1(Extreme, buffer[i]))
{
Extreme=buffer[i];
}
// std::cout << i << " " << (int)Extreme << " " << (int)buffer[i] << std::endl;
buffer[i]=Extreme;
}
// fix right border
Extreme = buffer[bufflength - m_Size/2 - 2];
for (int i=(int)bufflength - m_Size/2 - 1;i<(int)bufflength;i++)
{
assert(i < (int)bufflength);
if (m_TF1(Extreme, buffer[i]))
{
Extreme=buffer[i];
}
// std::cout << (int)Extreme << " " << (int)buffer[i] << std::endl;
buffer[i]=Extreme;
}
}
template<class TInputPix, class THistogramCompare, class TFunction1, class TFunction2>
bool
AnchorOpenCloseLine<TInputPix, THistogramCompare, TFunction1, TFunction2>
::StartLine(InputImagePixelType * buffer,
InputImagePixelType &Extreme,
Histogram &histo,
unsigned &outLeftP,
unsigned &outRightP,
unsigned
#ifndef NDEBUG
bufflength
#endif
)
{
// This returns true to indicate return to startLine label in pseudo
// code, and false to indicate finshLine
Extreme = buffer[outLeftP];
unsigned currentP = outLeftP + 1;
unsigned sentinel, endP;
while ((currentP < outRightP) && m_TF2(buffer[currentP], Extreme))
{
assert(currentP >= 0);
assert(currentP < bufflength);
Extreme = buffer[currentP];
++outLeftP;
++currentP;
}
sentinel = outLeftP + m_Size;
if (sentinel > outRightP)
{
// finish
return (false);
}
++currentP;
// ran m_Size pixels ahead
while (currentP < sentinel)
{
assert(currentP >= 0);
assert(currentP < bufflength);
if (m_TF2(buffer[currentP], Extreme))
{
endP = currentP;
#if 1
for (unsigned PP = outLeftP + 1; PP < endP; ++PP)
{
assert(PP >= 0);
assert(PP < bufflength);
buffer[PP] = Extreme;
}
#else
outLeftP++;
while(outLeftP < endP){buffer[outLeftP]=Extreme;outLeftP++;}
#endif
outLeftP = currentP;
return (true);
}
++currentP;
}
// We didn't find a smaller (for opening) value in the segment of
// reach of outLeftP. currentP is the first position outside the
// reach of outLeftP
assert(currentP >= 0);
assert(currentP < bufflength);
if (m_TF2(buffer[currentP], Extreme))
{
endP = currentP;
#if 1
for (unsigned PP = outLeftP + 1; PP < endP; ++PP)
{
assert(PP >= 0);
assert(PP < bufflength);
buffer[PP] = Extreme;
}
#else
outLeftP++;
while (outLeftP < endP) { buffer[outLeftP]=Extreme; outLeftP++; }
#endif
outLeftP = currentP;
return(true);
}
else
{
// Now we need a histogram
// Initialise it
histo.Reset();
outLeftP++;
for (unsigned aux = outLeftP; aux <= currentP; ++aux)
{
assert(aux >= 0);
assert(aux < bufflength);
histo.AddPixel(buffer[aux]);
}
// find the minimum value. The version
// in the paper assumes integer pixel types and initializes the
// search to the current extreme. Hopefully the latter is an
// optimization step.
Extreme = histo.GetValue();
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
histo.RemovePixel(buffer[outLeftP]);
buffer[outLeftP] = Extreme;
histo.AddPixel(Extreme);
}
while (currentP < outRightP)
{
++currentP;
assert(currentP >= 0);
assert(currentP < bufflength);
if (m_TF2(buffer[currentP], Extreme))
{
// Found a new extrem
endP = currentP;
#if 1
for (unsigned PP = outLeftP + 1; PP < endP; PP++)
{
assert(PP >= 0);
assert(PP < bufflength);
buffer[PP]=Extreme;
}
#else
outLeftP++;
while (outLeftP < endP) { buffer[outLeftP]=Extreme; outLeftP++; }
#endif
outLeftP = currentP;
return(true);
}
else
{
/* histogram update */
assert(currentP >= 0);
assert(currentP < bufflength);
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
histo.AddPixel(buffer[currentP]);
histo.RemovePixel(buffer[outLeftP]);
Extreme = histo.GetValue();
++outLeftP;
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
histo.RemovePixel(buffer[outLeftP]);
buffer[outLeftP] = Extreme;
histo.AddPixel(Extreme);
}
}
// Finish the line
while (outLeftP < outRightP)
{
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
histo.RemovePixel(buffer[outLeftP]);
Extreme = histo.GetValue();
++outLeftP;
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
histo.RemovePixel(buffer[outLeftP]);
buffer[outLeftP] = Extreme;
histo.AddPixel(Extreme);
}
return(false);
}
template<class TInputPix, class THistogramCompare, class TFunction1, class TFunction2>
void
AnchorOpenCloseLine<TInputPix, THistogramCompare, TFunction1, TFunction2>
::FinishLine(InputImagePixelType * buffer,
InputImagePixelType &Extreme,
unsigned &outLeftP,
unsigned &outRightP,
unsigned
#ifndef NDEBUG
bufflength
#endif
)
{
while (outLeftP < outRightP)
{
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
assert(outRightP >= 0);
assert(outRightP < bufflength);
if (m_TF2(buffer[outLeftP], buffer[outRightP]))
{
Extreme = buffer[outRightP];
--outRightP;
assert(outRightP >= 0);
assert(outRightP < bufflength);
if (!m_TF2(buffer[outRightP], Extreme))
{
buffer[outRightP] = Extreme;
}
}
else
{
Extreme = buffer[outLeftP];
++outLeftP;
assert(outLeftP >= 0);
assert(outLeftP < bufflength);
if (!m_TF2(buffer[outLeftP], Extreme))
{
buffer[outLeftP] = Extreme;
}
}
}
}
template<class TInputPix, class THistogramCompare, class TFunction1, class TFunction2>
void
AnchorOpenCloseLine<TInputPix, THistogramCompare, TFunction1, TFunction2>
::PrintSelf(std::ostream &os, Indent indent) const
{
os << indent << "Size: " << m_Size << std::endl;
}
} // end namespace itk
#endif
|