/usr/include/InsightToolkit/Review/Statistics/itkKdTree.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkKdTree.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkKdTree_h
#define __itkKdTree_h
#include <queue>
#include <vector>
#include "itkMacro.h"
#include "itkPoint.h"
#include "itkSize.h"
#include "itkObject.h"
#include "itkNumericTraits.h"
#include "itkArray.h"
#include "itkSample.h"
#include "itkSubsample.h"
#include "itkEuclideanDistanceMetric.h"
namespace itk {
namespace Statistics {
/** \class KdTreeNode
* \brief This class defines the interface of its derived classes.
*
* The methods defined in this class are a superset of the methods
* defined in its subclases. Therefore, the subclasses implements only
* part of the methods. The template argument, TSample, can be any
* subclass of the Sample class.
*
* There are two categories for the subclasses, terminal and nonterminal
* nodes. The terminal nodes stores the instance identifiers beloging to
* them, while the nonterminal nodes don't. Therefore, the
* AddInstanceIdentifier and the GetInstanceIdentifier have meaning only
* with the terminal ones. The terminal nodes don't have any child (left
* or right). For terminal nodes, the GetParameters method is void.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* \c MeasurementVectorSize has been removed to allow the length of a measurement
* vector to be specified at run time. The \c typedef for \c CentroidType has
* been changed from Array to FixedArray.
*
* \sa KdTreeNonterminalNode, KdTreeWeightedCentroidNonterminalNode,
* KdTreeTerminalNode
*/
template< class TSample >
struct KdTreeNode
{
/** type alias for itself */
typedef KdTreeNode< TSample> Self;
/** Measurement type, not the measurement vector type */
typedef typename TSample::MeasurementType MeasurementType;
/** Centroid type */
typedef Array< double > CentroidType;
/** Instance identifier type (index value type for the measurement
* vector in a sample */
typedef typename TSample::InstanceIdentifier InstanceIdentifier;
/** Returns true if the node is a terminal node, that is a node that
* doesn't have any child. */
virtual bool IsTerminal() const = 0;
/** Fills the partitionDimension (the dimension that was chosen to
* split the measurement vectors belong to this node to the left and the
* right child among k dimensions) and the partitionValue (the
* measurement value on the partitionDimension divides the left and the
* right child */
virtual void GetParameters(unsigned int &partitionDimension,
MeasurementType &partitionValue) const = 0;
/** Returns the pointer to the left child of this node */
virtual Self* Left() = 0;
virtual const Self* Left() const = 0;
/** Returns the pointer to the right child of this node */
virtual Self* Right() = 0;
virtual const Self* Right() const = 0;
/** Returs the number of measurement vectors under this node including
* its children */
virtual unsigned int Size() const = 0;
/** Returns the vector sum of the all measurement vectors under this node */
virtual void GetWeightedCentroid(CentroidType ¢roid) = 0;
/** Returns the centroid. weighted centroid divided by the size */
virtual void GetCentroid(CentroidType ¢roid) = 0;
/** Retuns the instance identifier of the index-th measurement vector */
virtual InstanceIdentifier GetInstanceIdentifier(size_t index) const = 0;
/** Add an instance to this node */
virtual void AddInstanceIdentifier(InstanceIdentifier id) = 0;
/** Destructor */
virtual ~KdTreeNode() {}; // needed to subclasses will actually be deleted
}; // end of class
/** \class KdTreeNonterminalNode
* \brief This is a subclass of the KdTreeNode.
*
* KdTreeNonterminalNode doesn't store the information related with the
* centroids. Therefore, the GetWeightedCentroid and the GetCentroid
* methods are void. This class should have the left and the right
* children. If we have a sample and want to generate a KdTree without
* the centroid related information, we can use the KdTreeGenerator.
*
* \sa KdTreeNode, KdTreeWeightedCentroidNonterminalNode, KdTreeGenerator
*/
template< class TSample >
struct KdTreeNonterminalNode: public KdTreeNode< TSample >
{
typedef KdTreeNode< TSample > Superclass;
typedef typename Superclass::MeasurementType MeasurementType;
typedef typename Superclass::CentroidType CentroidType;
typedef typename Superclass::InstanceIdentifier InstanceIdentifier;
KdTreeNonterminalNode(unsigned int partitionDimension,
MeasurementType partitionValue,
Superclass* left,
Superclass* right);
virtual ~KdTreeNonterminalNode() {}
virtual bool IsTerminal() const
{
return false;
}
void GetParameters(unsigned int &partitionDimension,
MeasurementType &partitionValue) const;
Superclass* Left()
{
return m_Left;
}
Superclass* Right()
{
return m_Right;
}
const Superclass* Left() const
{
return m_Left;
}
const Superclass* Right() const
{
return m_Right;
}
unsigned int Size() const
{
return 0;
}
void GetWeightedCentroid( CentroidType & )
{
/* do nothing */
}
void GetCentroid( CentroidType & )
{
/* do nothing */
}
// Returns the identifier of the only MeasurementVector associated with
// this node in the tree. This MeasurementVector will be used later during
// the distance computation when querying the tree.
InstanceIdentifier GetInstanceIdentifier(size_t) const
{ return this->m_InstanceIdentifier; }
void AddInstanceIdentifier(InstanceIdentifier valueId)
{ this->m_InstanceIdentifier = valueId; }
private:
unsigned int m_PartitionDimension;
MeasurementType m_PartitionValue;
InstanceIdentifier m_InstanceIdentifier;
Superclass* m_Left;
Superclass* m_Right;
}; // end of class
/** \class KdTreeWeightedCentroidNonterminalNode
* \brief This is a subclass of the KdTreeNode.
*
* KdTreeNonterminalNode does have the information related with the
* centroids. Therefore, the GetWeightedCentroid and the GetCentroid
* methods returns meaningful values. This class should have the left
* and right children. If we have a sample and want to generate a KdTree
* with the centroid related information, we can use the
* WeightedCentroidKdTreeGenerator. The centroid, the weighted
* centroid, and the size (the number of measurement vectors) can be
* used to accelate the k-means estimation.
*
* \sa KdTreeNode, KdTreeNonterminalNode, WeightedCentroidKdTreeGenerator
*/
template< class TSample >
struct KdTreeWeightedCentroidNonterminalNode: public KdTreeNode< TSample >
{
typedef KdTreeNode< TSample > Superclass;
typedef typename Superclass::MeasurementType MeasurementType;
typedef typename Superclass::CentroidType CentroidType;
typedef typename Superclass::InstanceIdentifier InstanceIdentifier;
typedef typename TSample::MeasurementVectorSizeType MeasurementVectorSizeType;
KdTreeWeightedCentroidNonterminalNode(unsigned int partitionDimension,
MeasurementType partitionValue,
Superclass* left,
Superclass* right,
CentroidType ¢roid,
unsigned int size);
virtual ~KdTreeWeightedCentroidNonterminalNode() {}
virtual bool IsTerminal() const
{
return false;
}
void GetParameters(unsigned int &partitionDimension,
MeasurementType &partitionValue) const;
/** Return the length of a measurement vector */
MeasurementVectorSizeType GetMeasurementVectorSize() const
{
return m_MeasurementVectorSize;
}
Superclass* Left()
{
return m_Left;
}
Superclass* Right()
{
return m_Right;
}
const Superclass* Left() const
{
return m_Left;
}
const Superclass* Right() const
{
return m_Right;
}
unsigned int Size() const
{
return m_Size;
}
void GetWeightedCentroid(CentroidType ¢roid)
{
centroid = m_WeightedCentroid;
}
void GetCentroid(CentroidType ¢roid)
{
centroid = m_Centroid;
}
InstanceIdentifier GetInstanceIdentifier(size_t) const
{
return this->m_InstanceIdentifier;
}
void AddInstanceIdentifier(InstanceIdentifier valueId)
{
this->m_InstanceIdentifier = valueId;
}
private:
MeasurementVectorSizeType m_MeasurementVectorSize;
unsigned int m_PartitionDimension;
MeasurementType m_PartitionValue;
CentroidType m_WeightedCentroid;
CentroidType m_Centroid;
InstanceIdentifier m_InstanceIdentifier;
unsigned int m_Size;
Superclass* m_Left;
Superclass* m_Right;
}; // end of class
/** \class KdTreeTerminalNode
* \brief This class is the node that doesn't have any child node. The
* IsTerminal method returns true for this class. This class stores the
* instance identifiers belonging to this node, while the nonterminal
* nodes do not store them. The AddInstanceIdentifier and
* GetInstanceIdentifier are storing and retrieving the instance
* identifiers belonging to this node.
*
* \sa KdTreeNode, KdTreeNonterminalNode,
* KdTreeWeightedCentroidNonterminalNode
*/
template< class TSample >
struct KdTreeTerminalNode: public KdTreeNode< TSample >
{
typedef KdTreeNode< TSample > Superclass;
typedef typename Superclass::MeasurementType MeasurementType;
typedef typename Superclass::CentroidType CentroidType;
typedef typename Superclass::InstanceIdentifier InstanceIdentifier;
KdTreeTerminalNode() {}
virtual ~KdTreeTerminalNode()
{
this->m_InstanceIdentifiers.clear();
}
bool IsTerminal() const
{
return true;
}
void GetParameters(unsigned int &,
MeasurementType &) const {}
Superclass* Left()
{
return 0;
}
Superclass* Right()
{
return 0;
}
const Superclass* Left() const
{
return 0;
}
const Superclass* Right() const
{
return 0;
}
unsigned int Size() const
{
return static_cast<unsigned int>( m_InstanceIdentifiers.size() );
}
void GetWeightedCentroid(CentroidType &)
{
/* do nothing */
}
void GetCentroid(CentroidType &)
{
/* do nothing */
}
InstanceIdentifier GetInstanceIdentifier(size_t index) const
{
return m_InstanceIdentifiers[index];
}
void AddInstanceIdentifier(InstanceIdentifier id)
{
m_InstanceIdentifiers.push_back(id);
}
private:
std::vector< InstanceIdentifier > m_InstanceIdentifiers;
}; // end of class
/** \class KdTree
* \brief This class provides methods for k-nearest neighbor search and
* related data structures for a k-d tree.
*
* An object of this class stores instance identifiers in a k-d tree
* that is a binary tree with childrens split along a dimension among
* k-dimensions. The dimension of the split (or partition) is determined
* for each nonterminal node that has two children. The split process is
* terminated when the node has no children (when the number of
* measurement vectors is less than or equal to the size set by the
* SetBucketSize. That is The split process is a recursive process in
* nature and in implementation. This implementation doesn't support
* dynamic insert and delete operations for the tree. Instead, we can
* use the KdTreeGenerator or WeightedCentroidKdTreeGenerator to
* generate a static KdTree object.
*
* To search k-nearest neighbor, call the Search method with the query
* point in a k-d space and the number of nearest neighbors. The
* GetSearchResult method returns a pointer to a NearestNeighbors object
* with k-nearest neighbors.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* 'MeasurementVectorSize' has been removed to allow the length of a measurement
* vector to be specified at run time. Please use the function
* GetMeasurementVectorSize() instead.
* \sa KdTreeNode, KdTreeNonterminalNode,
* KdTreeWeightedCentroidNonterminalNode, KdTreeTerminalNode,
* KdTreeGenerator, WeightedCentroidKdTreeNode
*/
template < class TSample >
class ITK_EXPORT KdTree : public Object
{
public:
/** Standard class typedefs */
typedef KdTree Self;
typedef Object Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods) */
itkTypeMacro(KdTree, Object);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** typedef alias for the source data container */
typedef TSample SampleType;
typedef typename TSample::MeasurementVectorType MeasurementVectorType;
typedef typename TSample::MeasurementType MeasurementType;
typedef typename TSample::InstanceIdentifier InstanceIdentifier;
typedef typename TSample::AbsoluteFrequencyType AbsoluteFrequencyType;
typedef unsigned int MeasurementVectorSizeType;
/** Get Macro to get the length of a measurement vector in the KdTree.
* The length is obtained from the input sample. */
itkGetConstMacro( MeasurementVectorSize, MeasurementVectorSizeType );
/** DistanceMetric type for the distance calculation and comparison */
typedef EuclideanDistanceMetric< MeasurementVectorType > DistanceMetricType;
/** Node type of the KdTree */
typedef KdTreeNode< TSample > KdTreeNodeType;
/** Neighbor type. The first element of the std::pair is the instance
* identifier and the second one is the distance between the measurement
* vector identified by the first element and the query point. */
typedef std::pair< InstanceIdentifier, double > NeighborType;
typedef std::vector< InstanceIdentifier > InstanceIdentifierVectorType;
/** \class NearestNeighbors
* \brief data structure for storing k-nearest neighbor search result
* (k number of Neighbors)
*
* This class stores the instance identifiers and the distance values
* of k-nearest neighbors. We can also query the farthest neighbor's
* distance from the query point using the GetLargestDistance
* method.
*/
class NearestNeighbors {
public:
/** Constructor */
NearestNeighbors() {}
/** Destructor */
~NearestNeighbors() {}
/** Initialize the internal instance identifier and distance holders
* with the size, k */
void resize(unsigned int k)
{
m_Identifiers.clear();
m_Identifiers.resize(k, NumericTraits< unsigned long >::max());
m_Distances.clear();
m_Distances.resize(k, NumericTraits< double >::max());
m_FarthestNeighborIndex = 0;
}
/** Returns the distance of the farthest neighbor from the query point */
double GetLargestDistance()
{
return m_Distances[m_FarthestNeighborIndex];
}
/** Replaces the farthest neighbor's instance identifier and
* distance value with the id and the distance */
void ReplaceFarthestNeighbor(InstanceIdentifier id, double distance)
{
m_Identifiers[m_FarthestNeighborIndex] = id;
m_Distances[m_FarthestNeighborIndex] = distance;
double farthestDistance = NumericTraits< double >::min();
const unsigned int size = static_cast<unsigned int>( m_Distances.size() );
for ( unsigned int i = 0; i < size; i++ )
{
if ( m_Distances[i] > farthestDistance )
{
farthestDistance = m_Distances[i];
m_FarthestNeighborIndex = i;
}
}
}
/** Returns the vector of k-neighbors' instance identifiers */
const InstanceIdentifierVectorType & GetNeighbors() const
{
return m_Identifiers;
}
/** Returns the instance identifier of the index-th neighbor among
* k-neighbors */
InstanceIdentifier GetNeighbor(unsigned int index) const
{
return m_Identifiers[index];
}
/** Returns the vector of k-neighbors' instance identifiers */
const std::vector< double >& GetDistances() const
{
return m_Distances;
}
private:
/** The index of the farthest neighbor among k-neighbors */
unsigned int m_FarthestNeighborIndex;
/** Storage for the instance identifiers of k-neighbors */
InstanceIdentifierVectorType m_Identifiers;
/** Storage for the distance values of k-neighbors from the query
* point */
std::vector< double > m_Distances;
};
/** Sets the number of measurement vectors that can be stored in a
* terminal node */
void SetBucketSize(unsigned int size);
/** Sets the input sample that provides the measurement vectors to the k-d
* tree */
void SetSample(const TSample* sample);
/** Returns the pointer to the input sample */
const TSample* GetSample() const
{
return m_Sample;
}
unsigned long Size() const
{
return m_Sample->Size();
}
/** Returns the pointer to the empty terminal node. A KdTree object
* has a single empty terminal node in memory. when the split process
* has to create an empty terminal node, the single instance is reused
* for this case */
KdTreeNodeType* GetEmptyTerminalNode()
{
return m_EmptyTerminalNode;
}
/** Sets the root node of the KdTree that is a result of
* KdTreeGenerator or WeightedCentroidKdTreeGenerator. */
void SetRoot(KdTreeNodeType* root)
{
if( this->m_Root )
{
this->DeleteNode( this->m_Root );
}
this->m_Root = root;
}
/** Returns the pointer to the root node. */
KdTreeNodeType* GetRoot()
{
return m_Root;
}
/** Returns the measurement vector identified by the instance
* identifier that is an identifier defiend for the input sample */
const MeasurementVectorType & GetMeasurementVector(InstanceIdentifier id) const
{
return m_Sample->GetMeasurementVector(id);
}
/** Returns the frequency of the measurement vector identified by
* the instance identifier */
AbsoluteFrequencyType GetFrequency(InstanceIdentifier id) const
{
return m_Sample->GetFrequency( id );
}
/** Get the pointer to the distance metric. */
DistanceMetricType* GetDistanceMetric()
{
return m_DistanceMetric.GetPointer();
}
/** Searches the k-nearest neighbors */
void Search(const MeasurementVectorType &query,
unsigned int numberOfNeighborsRequested,
InstanceIdentifierVectorType& result) const;
/** Searches the neighbors fallen into a hypersphere */
void Search(const MeasurementVectorType &query,
double radius,
InstanceIdentifierVectorType& result) const;
/** Returns the number of measurement vectors that have been visited
* to find the k-nearest neighbors. */
int GetNumberOfVisits() const
{
return m_NumberOfVisits;
}
/** Returns true if the intermediate k-nearest neighbors exist within
* the the bounding box defined by the lowerBound and the
* upperBound. Otherwise returns false. Returns false if the ball
* defined by the distance between the query point and the farthest
* neighbor touch the surface of the bounding box. */
bool BallWithinBounds(const MeasurementVectorType &query,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
double radius) const;
/** Returns true if the ball defined by the distance between the query
* point and the farthest neighbor overlaps with the bounding box
* defined by the lower and the upper bounds. */
bool BoundsOverlapBall(const MeasurementVectorType &query,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
double radius) const;
/** Deletes the node recursively */
void DeleteNode(KdTreeNodeType *node);
/** Prints out the tree information */
void PrintTree( std::ostream & os ) const;
/** Prints out the tree information */
void PrintTree(KdTreeNodeType *node, unsigned int level,
unsigned int activeDimension,
std::ostream & os = std::cout ) const;
/** Draw out the tree information to a ostream using
* the format of the Graphviz dot tool. */
void PlotTree( std::ostream & os ) const;
/** Prints out the tree information */
void PlotTree(KdTreeNodeType *node, std::ostream & os = std::cout ) const;
typedef typename TSample::Iterator Iterator;
typedef typename TSample::ConstIterator ConstIterator;
Iterator Begin()
{
typename TSample::ConstIterator iter = m_Sample->Begin();
return iter;
}
Iterator End()
{
Iterator iter = m_Sample->End();
return iter;
}
ConstIterator Begin() const
{
typename TSample::ConstIterator iter = m_Sample->Begin();
return iter;
}
ConstIterator End() const
{
ConstIterator iter = m_Sample->End();
return iter;
}
protected:
/** Constructor */
KdTree();
/** Destructor: deletes the root node and the empty terminal node. */
virtual ~KdTree();
void PrintSelf(std::ostream& os, Indent indent) const;
/** search loop */
int NearestNeighborSearchLoop(const KdTreeNodeType* node,
const MeasurementVectorType &query,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound) const;
/** search loop */
int SearchLoop(const KdTreeNodeType* node, const MeasurementVectorType &query,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound) const;
private:
KdTree(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
/** Pointer to the input sample */
const TSample* m_Sample;
/** Number of measurement vectors can be stored in a terminal node. */
int m_BucketSize;
/** Pointer to the root node */
KdTreeNodeType* m_Root;
/** Pointer to the empty terminal node */
KdTreeNodeType* m_EmptyTerminalNode;
/** Distance metric smart pointer */
typename DistanceMetricType::Pointer m_DistanceMetric;
mutable bool m_IsNearestNeighborSearch;
mutable double m_SearchRadius;
mutable InstanceIdentifierVectorType m_Neighbors;
/** k-nearest neighbors */
mutable NearestNeighbors m_NearestNeighbors;
/** Temporary lower bound in the SearchLoop. */
mutable MeasurementVectorType m_LowerBound;
/** Temporary upper bound in the SearchLoop. */
mutable MeasurementVectorType m_UpperBound;
/** Number of measurment vectors to find k-nearest neighbors. */
mutable int m_NumberOfVisits;
/** Flag to stop the SearchLoop. */
mutable bool m_StopSearch;
/** Temporary neighbor */
mutable NeighborType m_TempNeighbor;
/** Measurement vector size */
MeasurementVectorSizeType m_MeasurementVectorSize;
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkKdTree.txx"
#endif
#endif
|