This file is indexed.

/usr/include/InsightToolkit/Review/Statistics/itkGaussianMembershipFunction.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianMembershipFunction.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianMembershipFunction_h
#define __itkGaussianMembershipFunction_h

#include "itkArray.h"
#include "itkMatrix.h"
#include "itkMembershipFunctionBase.h"

namespace itk { 
namespace Statistics {

/** \class GaussianMembershipFunction
 * \brief GaussianMembershipFunction class represents Gaussian function.
 *
 * This class keeps parameter to define Gaussian function and has
 * method to return the probability density of an instance (pattern) .  
 * If the all element of the covariance matrix is zero the "usual" density 
 * calculations ignored. if the measurement vector to be evaluated is equal to
 * the mean, then the Evaluate method will return maximum value of
 * double and return 0 for others 
 * 
 *
 */

template< class TMeasurementVector >
class ITK_EXPORT GaussianMembershipFunction :
    public MembershipFunctionBase< TMeasurementVector >
{
public:
  /** Standard class typedefs */
  typedef GaussianMembershipFunction                    Self;
  typedef MembershipFunctionBase< TMeasurementVector >  Superclass;
  typedef SmartPointer<Self>                            Pointer;
  typedef SmartPointer<const Self>                      ConstPointer;

  /** Strandard macros */
  itkTypeMacro(GaussianMembershipFunction, MembershipFunction);
  itkNewMacro(Self);
  
  /** Typedef alias for the measurement vectors */
  typedef TMeasurementVector MeasurementVectorType;

  /** Length of each measurement vector */
  typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
  
  /** Type of the mean vector */
  typedef Array< double >                               MeanType;
  
  /** Type of the covariance matrix */
  typedef VariableSizeMatrix< double >                  CovarianceType;

  /** Set/Get the mean */
  void SetMean( const MeanType & mean );
  itkGetConstMacro( Mean, MeanType );

  /** Sets the covariance matrix.
   * Also, this function calculates inverse covariance and pre factor of 
   * Gaussian Distribution to speed up GetProbability */
  void SetCovariance(const CovarianceType & cov); 
  itkGetConstMacro( Covariance, CovarianceType ); 

  /** Gets the probability density of a measurement vector. */
  double Evaluate(const MeasurementVectorType &measurement) const;
 
  /** Return a copy of the current membership function */
  Pointer Clone(); 
  
protected:
  GaussianMembershipFunction(void);
  virtual ~GaussianMembershipFunction(void) {}
  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  MeanType        m_Mean;           // mean
  CovarianceType  m_Covariance;     // covariance matrix

  // inverse covariance matrix which is automatically calculated 
  // when covariace matirx is set.  This speed up the GetProbability()
  CovarianceType  m_InverseCovariance; 

  // pre_factor which is automatically calculated 
  // when covariace matirx is set.  This speeds up the GetProbability()  
  double m_PreFactor;

  /** if the all element of the given covarinace is zero, then this
   * value set to true */
  bool m_IsCovarianceZero;
};

} // end of namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianMembershipFunction.txx"
#endif

#endif