This file is indexed.

/usr/include/InsightToolkit/Review/Statistics/itkGaussianDistribution.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianDistribution.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianDistribution_h
#define __itkGaussianDistribution_h

#include "itkProbabilityDistribution.h"

namespace itk { 
namespace Statistics {

/** \class GaussianDistribution
 * \brief GaussianDistribution class defines the interface for a
 * univariate Gaussian distribution (pdfs, cdfs, etc.).
 *
 * GaussianDistribution provides access to the probability density
 * function (pdf), the cumulative distribution function (cdf), and the
 * inverse cumulative distribution function for a Gaussian distribution.
 *
 * The EvaluatePDF(), EvaluateCDF, EvaluateInverseCDF() methods are
 * all virtual, allowing algorithms to be written with an abstract
 * interface to a distribution (with said distribution provided to the
 * algorithm at run-time).  Static methods, not requiring an instance
 * of the distribution, are also provided.  The static methods allow
 * for optimized access to distributions when the distribution is
 * known a priori to the algorithm.
 *
 * GaussianDistributions are univariate.  Multivariate versions may
 * be provided under a separate superclass (since the parameters to the
 * pdf and cdf would have to be vectors not scalars).
 *
 * GaussianDistributions can be used for Z-score statistical tests.
 *
 * \note This work is part of the National Alliance for Medical Image
 * Computing (NAMIC), funded by the National Institutes of Health
 * through the NIH Roadmap for Medical Research, Grant U54 EB005149.
 * Information on the National Centers for Biomedical Computing
 * can be obtained from http://nihroadmap.nih.gov/bioinformatics.  
 */
class ITK_EXPORT GaussianDistribution :
    public ProbabilityDistribution
{
public:
  /** Standard class typedefs */
  typedef GaussianDistribution     Self;
  typedef ProbabilityDistribution  Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Strandard macros */
  itkTypeMacro(GaussianDistribution, ProbabilityDistribution);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Return the number of parameters.  For a univariate Gaussian,
   * this is 2 (mean, variance). */
  virtual unsigned long GetNumberOfParameters() const { return 2; }
  
  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluatePDF(double x) const;

  /** Evaluate the probability density function (pdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (mean, variance). */
  virtual double EvaluatePDF(double x, const ParametersType&) const;

  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluatePDF(double x, double mean, double variance) const;
  
  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateCDF(double x) const;

  /** Evaluate the cumulative distribution function (cdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (mean, variance). */
  virtual double EvaluateCDF(double x, const ParametersType&) const;
  
  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateCDF(double x, double mean, double variance) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0. The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateInverseCDF(double p) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (mean, variance). */
  virtual double EvaluateInverseCDF(double p, const ParametersType&) const;
  
  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateInverseCDF(double p,
                                    double mean,
                                    double variance) const;

  /** Set the mean of the Gaussian distribution. Defaults to 0.0. The
   * mean is stored in position 0 of the parameters vector. */
  virtual void SetMean(double);

  /** Get the mean of the Gaussian distribution. Defaults to 0.0. The
   * mean is stored in position 0 of the parameters vector. */
  virtual double GetMean() const;

  /** Does this distribution have a mean? */
  virtual bool HasMean() const { return true; }

  /** Set the variance of the Gaussian distribution.  Defaults
   * to 1.0. The variance is stored in position 1 of the parameters
   * vector.  */
  virtual void SetVariance(double);

  /** Get the variance of the Gaussian distribution. Defaults to
   * 1.0. The variance is stored in position 1 of the parameters vector. */
  virtual double GetVariance() const;

  /** Does this distribution have a variance? */
  virtual bool HasVariance() const { return true; }
  
  /** Static method to evaluate the probability density function (pdf)
   * of a standardized (mean zero, unit variance) Gaussian. The static
   * method provides optimized access without requiring an instance of
   * the class. */
  static double PDF(double x);

  /** Static method to evaluate the probability density function (pdf)
   * of a Gaussian. The parameters of the distribution are passed as a
   * parameter vector. The ordering of the parameters is (mean,
   * variance). The static method provides optimized access without
   * requiring an instance of the class. */
  static double PDF(double x, const ParametersType&);
  
  /** Static method to evaluate the probability density function (pdf)
   * of a Gaussian. The parameters of the distribution are passed as
   * separate values. The static method provides optimized access
   * without requiring an instance of the class. */
  static double PDF(double x, double mean, double variance);
  
  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a standardized (mean zero, unit variance) Gaussian. The
   * static method provides optimized access without requiring an
   * instance of the class. Accuracy is approximately 10^-8. */
  static double CDF(double x);

  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Gaussian. The parameters of the distribution are passed
   * as a parameter vector. The ordering of the parameters is (mean,
   * variance). The static method provides optimized access
   * without requiring an instance of the class. */
  static double CDF(double x, const ParametersType&);

  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Gaussian. The parameters of the distribution are
   * passed as separate values. The static method provides optimized access
   * without requiring an instance of the class. */
  static double CDF(double x, double mean, double variance);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a standardized (mean zero, unit variance) Gaussian.
   * The static method provides optimized access without requiring an
   * instance of the class. Parameter p must be between 0.0 and 1.0.
   *
   * THis implementation was provided by Robert W. Cox from the
   * Biophysics Research Institute at the Medical College of
   * Wisconsin.  This function is based off of a rational polynomial
   * approximation to the inverse Gaussian CDF which can be found in
   * M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions
   * with Formulas, Graphs, and Mathematical Tables.  John Wiley & Sons.
   * New York. Equation 26.2.23. pg. 933. 1972.
   *
   * Since the initial approximation only provides an estimate within
   * 4.5 E-4 of the true value, 3 Newton-Raphson interations are used
   * to refine the approximation. Accuracy is approximately 10^-8.
   *
   * Let,
   * Q(x) = (1/sqrt(2*pi)) Int_{x}^{infinity} e^{-t^2/2} dt
   * = 0.5 * erfc(x/sqrt(2))
   *
   * Given p, this function computes x such that Q(x) = p, for 0 < p < 1
   *
   * Note that the Gaussian CDF is defined as
   * P(x) = (1/sqrt(2*pi)) Int_{-infinity}{x} e^{-t^2/2} dt
   * = 1 - Q(x)
   *
   * This function has been modified to compute the inverse of P(x) instead
   * of Q(x).
   */
  static double InverseCDF(double p);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Gaussian.  The parameters of the distribution are
   * passed as a parameter vector. The ordering of the parameters is
   * (mean, variance). The static method provides optimized access
   * without requiring an instance of the class. Parameter p must be
   * between 0.0 and 1.0 */
  static double InverseCDF(double p, const ParametersType&);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Gaussian.  The parameters of the distribution are
   * passed as separate values. The static method provides optimized
   * access without requiring an instance of the class. Parameter p
   * must be between 0.0 and 1.0 */
  static double InverseCDF(double p, double mean, double variance);
  
protected:
  GaussianDistribution(void);
  virtual ~GaussianDistribution(void) {}

  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  GaussianDistribution(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
  
}; // end of class

} // end of namespace Statistics
} // end namespace itk

#endif