/usr/include/InsightToolkit/Algorithms/itkMIRegistrationFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkMIRegistrationFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkMIRegistrationFunction_txx
#define __itkMIRegistrationFunction_txx
#include "itkMIRegistrationFunction.h"
#include "itkImageRandomIteratorWithIndex.h"
#include "itkExceptionObject.h"
#include "vnl/vnl_math.h"
#include "itkNeighborhoodIterator.h"
#include <vnl/vnl_matrix.h>
namespace itk {
/**
* Default constructor
*/
template <class TFixedImage, class TMovingImage, class TDeformationField>
MIRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::MIRegistrationFunction()
{
RadiusType r;
unsigned int j;
m_NumberOfSamples=1;
m_NumberOfBins=4;
for( j = 0; j < ImageDimension; j++ )
{
r[j] = 2;
m_NumberOfSamples *= (r[j]*2+1);
}
this->SetRadius(r);
m_MetricTotal=0.0;
m_TimeStep = 1.0;
m_Minnorm=1.0;
m_DenominatorThreshold = 1e-9;
m_IntensityDifferenceThreshold = 0.001;
this->SetMovingImage(NULL);
this->SetFixedImage(NULL);
m_FixedImageGradientCalculator = GradientCalculatorType::New();
m_DoInverse = true;
m_DoInverse = false;
if (m_DoInverse)
{
m_MovingImageGradientCalculator = GradientCalculatorType::New();
}
typename DefaultInterpolatorType::Pointer interp =
DefaultInterpolatorType::New();
m_MovingImageInterpolator = static_cast<InterpolatorType*>(
interp.GetPointer() );
}
/*
* Standard "PrintSelf" method.
*/
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MIRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
/*
os << indent << "MovingImageIterpolator: ";
os << m_MovingImageInterpolator.GetPointer() << std::endl;
os << indent << "FixedImageGradientCalculator: ";
os << m_FixedImageGradientCalculator.GetPointer() << std::endl;
os << indent << "DenominatorThreshold: ";
os << m_DenominatorThreshold << std::endl;
os << indent << "IntensityDifferenceThreshold: ";
os << m_IntensityDifferenceThreshold << std::endl;
*/
}
/*
* Set the function state values before each iteration
*/
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MIRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::InitializeIteration()
{
if( !this->m_MovingImage || !this->m_FixedImage || !m_MovingImageInterpolator )
{
itkExceptionMacro( << "MovingImage, FixedImage and/or Interpolator not set" );
}
// setup gradient calculator
m_FixedImageGradientCalculator->SetInputImage( this->m_FixedImage );
if (m_DoInverse)
{
// setup gradient calculator
m_MovingImageGradientCalculator->SetInputImage( this->m_MovingImage );
}
// setup moving image interpolator
m_MovingImageInterpolator->SetInputImage( this->m_MovingImage );
m_MetricTotal=0.0;
}
/**
* Compute update at a non boundary neighbourhood
*/
template <class TFixedImage, class TMovingImage, class TDeformationField>
typename MIRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PixelType
MIRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ComputeUpdate(const NeighborhoodType &it, void * itkNotUsed(globalData),
const FloatOffsetType& itkNotUsed(offset))
{
// we compute the derivative of MI w.r.t. the infinitesimal
// displacement, following viola and wells.
// 1) collect samples from M (Moving) and F (Fixed)
// 2) compute minimum and maximum values of M and F
// 3) discretized M and F into N bins
// 4) estimate joint probability P(M,F) and P(F)
// 5) derivatives is given as :
//
// $$ \nabla MI = \frac{1}{N} \sum_i \sum_j (F_i-F_j)
// ( W(F_i,F_j) \frac{1}{\sigma_v} -
// W((F_i,M_i),(F_j,M_j)) \frac{1}{\sigma_vv} ) \nabla F
//
// NOTE : must estimate sigma for each pdf
typedef vnl_matrix<double> matrixType;
typedef std::vector<double> sampleContainerType;
typedef std::vector<CovariantVectorType> gradContainerType;
typedef std::vector<double> gradMagContainerType;
typedef std::vector<unsigned int> inImageIndexContainerType;
PixelType update;
PixelType derivative;
unsigned int j;
const IndexType oindex = it.GetIndex();
unsigned int indct;
for (indct=0;indct<ImageDimension;indct++)
{
update[indct]=0.0;
derivative[indct]=0.0;
}
float thresh2=1.0/255.;// FIX ME : FOR PET LUNG ONLY !!
float thresh1=1.0/255.;
if ( this->m_MovingImage->GetPixel(oindex) <= thresh1 &&
this->m_FixedImage->GetPixel(oindex) <= thresh2 ) return update;
typename FixedImageType::SizeType hradius=this->GetRadius();
FixedImageType* img =const_cast<FixedImageType *>(this->m_FixedImage.GetPointer());
typename FixedImageType::SizeType imagesize=img->GetLargestPossibleRegion().GetSize();
bool inimage;
// now collect the samples
sampleContainerType fixedSamplesA;
sampleContainerType movingSamplesA;
sampleContainerType fixedSamplesB;
sampleContainerType movingSamplesB;
inImageIndexContainerType inImageIndicesA;
gradContainerType fixedGradientsA;
gradMagContainerType fixedGradMagsA;
inImageIndexContainerType inImageIndicesB;
gradContainerType fixedGradientsB;
gradMagContainerType fixedGradMagsB;
unsigned int samplestep=2; //m_Radius[0];
double minf=1.e9,minm=1.e9,maxf=0.0,maxm=0.0;
double movingMean=0.0;
double fixedMean=0.0;
double fixedValue=0,movingValue=0;
unsigned int sampct=0;
ConstNeighborhoodIterator<DeformationFieldType>
asamIt( hradius,
this->GetDeformationField(),
this->GetDeformationField()->GetRequestedRegion());
asamIt.SetLocation(oindex);
unsigned int hoodlen=asamIt.Size();
// first get the density-related sample
for(indct=0; indct<hoodlen; indct=indct+samplestep)
{
IndexType index=asamIt.GetIndex(indct);
inimage=true;
for (unsigned int dd=0; dd<ImageDimension; dd++)
{
if ( index[dd] < 0 || index[dd] > static_cast<typename IndexType::IndexValueType>(imagesize[dd]-1) ) inimage=false;
}
if (inimage)
{
fixedValue=0.;
movingValue=0.0;
CovariantVectorType fixedGradient;
// Get fixed image related information
fixedValue = (double) this->m_FixedImage->GetPixel( index );
fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex( index );
// Get moving image related information
typedef typename DeformationFieldType::PixelType DeformationPixelType;
const DeformationPixelType itvec = this->GetDeformationField()->GetPixel(index);
PointType mappedPoint;
this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
for( j = 0; j < ImageDimension; j++ )
{
mappedPoint[j] += itvec[j];
}
if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
{
movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
}
else
{
movingValue = 0.0;
}
if (fixedValue > maxf) maxf=fixedValue;
else if (fixedValue < minf) minf=fixedValue;
if (movingValue > maxm) maxm=movingValue;
else if (movingValue < minm) minm=movingValue;
fixedMean += fixedValue;
movingMean += movingValue;
fixedSamplesA.insert(fixedSamplesA.begin(),(double)fixedValue);
fixedGradientsA.insert(fixedGradientsA.begin(),fixedGradient);
movingSamplesA.insert(movingSamplesA.begin(),(double)movingValue);
// fixedSamplesB.insert(fixedSamplesB.begin(),(double)fixedValue);
// fixedGradientsB.insert(fixedGradientsB.begin(),fixedGradient);
// movingSamplesB.insert(movingSamplesB.begin(),(double)movingValue);
sampct++;
}
}
// BEGIN RANDOM A SAMPLES
bool getrandasamples=true;
if (getrandasamples)
{
typename FixedImageType::RegionType region=img->GetLargestPossibleRegion();
ImageRandomIteratorWithIndex<FixedImageType> randasamit(img,region);
unsigned int numberOfSamples=20;
randasamit.SetNumberOfSamples( numberOfSamples );
// numberOfSamples=100;
indct=0;
randasamit.GoToBegin();
while( !randasamit.IsAtEnd() && indct < numberOfSamples )
{
IndexType index=randasamit.GetIndex();
inimage=true;
float d=0.0;
for (unsigned int dd=0; dd<ImageDimension; dd++)
{
if ( index[dd] < 0 || index[dd] > static_cast<typename IndexType::IndexValueType>(imagesize[dd]-1) ) inimage=false;
d += (index[dd]-oindex[dd])*(index[dd]-oindex[dd]);
}
if (inimage )
{
fixedValue=0.;
movingValue=0.0;
CovariantVectorType fixedGradient;
double fgm=0;
// Get fixed image related information
fixedValue = (double) this->m_FixedImage->GetPixel( index );
fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex( index );
for( j = 0; j < ImageDimension; j++ )
{
fgm += fixedGradient[j] *fixedGradient[j];
}
// Get moving image related information
typedef typename DeformationFieldType::PixelType DeformationPixelType;
const DeformationPixelType itvec=this->GetDeformationField()->GetPixel(index);
PointType mappedPoint;
this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
for( j = 0; j < ImageDimension; j++ )
{
mappedPoint[j] += itvec[j];
}
if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
{
movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
}
else
{
movingValue = 0.0;
}
// if ( (fixedValue > 0 || movingValue > 0 || fgm > 0) || !filtersamples)
if ( fixedValue > 0 || movingValue > 0 || fgm > 0 )
{
fixedMean += fixedValue;
movingMean += movingValue;
fixedSamplesA.insert(fixedSamplesA.begin(),(double)fixedValue);
fixedGradientsA.insert(fixedGradientsA.begin(),fixedGradient);
movingSamplesA.insert(movingSamplesA.begin(),(double)movingValue);
sampct++;
indct++;
}
}
++randasamit;
}
}
// END RANDOM A SAMPLES
const DeformationFieldType * const field = this->GetDeformationField();
for (j=0;j<ImageDimension; j++)
{
hradius[j]=0;
}
ConstNeighborhoodIterator<DeformationFieldType>
hoodIt( hradius, field, field->GetRequestedRegion());
hoodIt.SetLocation(oindex);
// then get the entropy ( and MI derivative ) related sample
for(indct=0; indct<hoodIt.Size(); indct=indct+1)
{
const IndexType index=hoodIt.GetIndex(indct);
inimage=true;
float d=0.0;
for (unsigned int dd=0; dd<ImageDimension; dd++)
{
if ( index[dd] < 0 || index[dd] > static_cast<typename IndexType::IndexValueType>(imagesize[dd]-1) ) inimage=false;
d += (index[dd]-oindex[dd])*(index[dd]-oindex[dd]);
}
if (inimage && vcl_sqrt(d) <= 1.0)
{
fixedValue=0.;
movingValue=0.0;
CovariantVectorType fixedGradient;
// Get fixed image related information
fixedValue = (double) this->m_FixedImage->GetPixel( index );
fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex( index );
// Get moving image related information
// Get moving image related information
const typename DeformationFieldType::PixelType hooditvec=this->m_DeformationField->GetPixel(index);
PointType mappedPoint;
this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
for(j = 0; j < ImageDimension; j++ )
{
mappedPoint[j] += hooditvec[j];
}
if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
{
movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
}
else
{
movingValue = 0.0;
}
fixedSamplesB.insert(fixedSamplesB.begin(),(double)fixedValue);
fixedGradientsB.insert(fixedGradientsB.begin(),fixedGradient);
movingSamplesB.insert(movingSamplesB.begin(),(double)movingValue);
}
}
double fsigma=0.0;
double msigma=0.0;
double jointsigma=0.0;
const double numsamplesB= (double) fixedSamplesB.size();
const double numsamplesA= (double) fixedSamplesA.size();
double nsamp=numsamplesB;
// if (maxf == minf && maxm == minm) return update;
// else std::cout << " b samps " << fixedSamplesB.size()
// << " a samps " << fixedSamplesA.size() <<
// oindex << hoodIt.Size() << it.Size() << std::endl;
fixedMean /= (double)sampct;
movingMean /= (double)sampct;
bool mattes=false;
for(indct=0; indct<(unsigned int)numsamplesA; indct++)
{
// Get fixed image related information
fixedValue=fixedSamplesA[indct];
movingValue=movingSamplesA[indct];
fsigma += (fixedValue-fixedMean)*(fixedValue-fixedMean);
msigma += (movingValue-movingMean)*(movingValue-movingMean);
jointsigma += fsigma+msigma;
if (mattes)
{
fixedSamplesA[indct]=fixedSamplesA[indct]-minf;
movingSamplesA[indct]=movingSamplesA[indct]-minm;
if (indct < numsamplesB)
{
fixedSamplesB[indct]=fixedSamplesB[indct]-minf;
movingSamplesB[indct]=movingSamplesB[indct]-minm;
}
}
}
fsigma=vcl_sqrt(fsigma/numsamplesA);
float sigmaw=0.8;
double m_FixedImageStandardDeviation=fsigma*sigmaw;
msigma=vcl_sqrt(msigma/numsamplesA);
double m_MovingImageStandardDeviation=msigma*sigmaw;
jointsigma=vcl_sqrt(jointsigma/numsamplesA);
if (fsigma < 1.e-7 || msigma < 1.e-7 ) return update;
double m_MinProbability = 0.0001;
double dLogSumFixed=0.,dLogSumMoving=0.,dLogSumJoint=0.0;
unsigned int bsamples;
unsigned int asamples;
// the B samples estimate the entropy
for(bsamples=0; bsamples<(unsigned int)numsamplesB; bsamples++)
{
double dDenominatorMoving = m_MinProbability;
double dDenominatorJoint = m_MinProbability;
double dDenominatorFixed = m_MinProbability;
double dSumFixed = m_MinProbability;
// this loop estimates the density
for(asamples=0; asamples<(unsigned int)numsamplesA; asamples++)
{
double valueFixed = ( fixedSamplesB[bsamples] - fixedSamplesA[asamples] )
/ m_FixedImageStandardDeviation;
valueFixed = vcl_exp(-0.5*valueFixed*valueFixed);
double valueMoving = ( movingSamplesB[bsamples] - movingSamplesA[asamples] )
/ m_MovingImageStandardDeviation;
valueMoving = vcl_exp(-0.5*valueMoving*valueMoving);
dDenominatorMoving += valueMoving;
dDenominatorFixed += valueFixed;
dSumFixed += valueFixed;
// everything above here can be pre-computed only once and stored,
// assuming const v.f. in small n-hood
dDenominatorJoint += valueMoving * valueFixed;
} // end of sample A loop
dLogSumFixed -= vcl_log(dSumFixed );
dLogSumMoving -= vcl_log(dDenominatorMoving );
dLogSumJoint -= vcl_log(dDenominatorJoint );
// this loop estimates the density
for(asamples=0; asamples<(unsigned int)numsamplesA; asamples++)
{
double valueFixed = ( fixedSamplesB[bsamples] - fixedSamplesA[asamples] )
/ m_FixedImageStandardDeviation;
valueFixed = vcl_exp(-0.5*valueFixed*valueFixed);
double valueMoving = ( movingSamplesB[bsamples] - movingSamplesA[asamples] )
/ m_MovingImageStandardDeviation;
valueMoving = vcl_exp(-0.5*valueMoving*valueMoving);
const double weightFixed = valueFixed / dDenominatorFixed;
// dDenominatorJoint and weightJoint are what need to be computed each time
const double weightJoint = valueMoving * valueFixed / dDenominatorJoint;
// begin where we may switch fixed and moving
double weight = ( weightFixed - weightJoint );
weight *= ( fixedSamplesB[bsamples] - fixedSamplesA[asamples] );
// end where we may switch fixed and moving
// this can also be stored away
for (unsigned int i=0; i<ImageDimension;i++)
{
derivative[i] += ( fixedGradientsB[bsamples][i] - fixedGradientsA[asamples][i] ) * weight;
}
} // end of sample A loop
} // end of sample B loop
const double threshold = -0.1 * nsamp * vcl_log(m_MinProbability );
if( dLogSumMoving > threshold || dLogSumFixed > threshold ||
dLogSumJoint > threshold )
{
// at least half the samples in B did not occur within
// the Parzen window width of samples in A
return update;
}
double value=0.0;
value = dLogSumFixed + dLogSumMoving - dLogSumJoint;
value /= nsamp;
value += vcl_log(nsamp );
m_MetricTotal += value;
this->m_Energy += value;
derivative /= nsamp;
derivative /= vnl_math_sqr( m_FixedImageStandardDeviation );
double updatenorm=0.0;
for (unsigned int tt=0; tt<ImageDimension; tt++)
{
updatenorm += derivative[tt]*derivative[tt];
}
updatenorm=vcl_sqrt(updatenorm);
if (updatenorm > 1.e-20 && this->GetNormalizeGradient())
{
derivative=derivative/updatenorm;
}
return derivative*this->GetGradientStep();
}
} // end namespace itk
#endif
|