This file is indexed.

/usr/include/IGSTK/igstkPivotCalibrationAlgorithm.h is in libigstk4-dev 4.4.0-2build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*=========================================================================

  Program:   Image Guided Surgery Software Toolkit
  Module:    $RCSfile: igstkPivotCalibrationAlgorithm.h,v $
  Language:  C++
  Date:      $Date: 2009-07-05 19:53:19 $
  Version:   $Revision: 1.5 $

  Copyright (c) ISC  Insight Software Consortium.  All rights reserved.
  See IGSTKCopyright.txt or http://www.igstk.org/copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __igstkPivotCalibrationAlgorithm_h
#define __igstkPivotCalibrationAlgorithm_h

#include <vector>
#include "igstkStateMachine.h"
#include "igstkMacros.h"
#include "igstkObject.h"
#include "igstkTransform.h"

namespace igstk
{

/** \class PivotCalibrationAlgorithm
 * 
 *  \brief This class implements the pivot calibration algorithm, locating a 
 *         tools tip relative to a tracked coordinate system. 
 *
 *  We are interested in the location of a tool's tip relative to a tracked 
 *  coordinate system. By rotating the tool while its tip location remains 
 *  fixed we compute both the tip location relative to the tracked coordinate 
 *  system and the fixed point's coordinates in the tracker's coordinate 
 *  system. Every transformation \f$[R_i,\mathbf{t_i}]\f$ acquired by the 
 *  tracker during the rotation yields three equations in six unknowns,
 *  \f$R_i \mathbf{t_{tip}} + \mathbf{t_i} = \mathbf{t_{fixed}}\f$, with the 
 *  unknown 3x1 vectors \f$\mathbf{t_{tip}}\f$ and \f$\mathbf{t_{fixed}}\f$. 
 *  The solution is obtained in a least squares manner by acquiring multiple 
 *  transformation while rotating the tool around its tip resulting in the 
 *  following overdetermined equation system:
 *  \f$$ \left[
 *       \begin{array}{ccc}
 *         R_0 &        & -I \\
 *             & \vdots &    \\
 *         R_n &        & -I
 *       \end{array}
 *     \right]
 *     \left[
 *       \begin{array}{c}
 *         \bf{t_{tip}}\\
 *         \bf{t_{fixed}}
 *       \end{array}
 *     \right]
 *     =
 *     \left[
 *       \begin{array}{c}
 *         \bf{-t_0}\\
 *         \vdots\\
 *         \bf{-t_n}
 *       \end{array}
 *     \right] $$\f 
 * Which is solved using the pseudoinverse (singular value decomposition).
 */
class PivotCalibrationAlgorithm : public Object
{

public:
  
  /** Macro with standard traits declarations (Self, SuperClass, State 
   *  Machine etc.). */
  igstkStandardClassTraitsMacro( PivotCalibrationAlgorithm, Object )

  typedef itk::Point< double, 3 >    PointType;
  typedef igstk::Transform           TransformType;
  typedef std::vector<TransformType> TransformContainerType;

  /** This method adds the given transform to those used to perform the pivot 
   *  calibration. The method should only be invoked before calibration is 
   *  performed or after it has been reset or it will generate an 
   *  InvalidRequestErrorEvent.
   *  NOTE: The transform is assumed to be valid. */
   void RequestAddTransform( const TransformType & t );
  
  /** This method adds the given transforms to those used to perform the pivot 
   *  calibration. The method should only be invoked before calibration is 
   *  performed or after it has been reset or it will generate an 
   *  InvalidRequestErrorEvent.
   *  NOTE: The transforms are assumed to be valid. */
  void RequestAddTransforms( std::vector< TransformType > & t );

  /** This method resets the class to its initial state prior to computing a 
   *  calibration (all user provided transformations are removed). */
  void RequestResetCalibration();

  /** This method performs the calibration. It generates two events: 
   *  CalibrationSuccessEvent, and CalibrationFailureEvent, denoting success 
   *  or failure of the computation. Note that invoking this method prior to 
   *  setting transfromations is considered valid, it will simply generate a 
   *  CalibraitonFaliureEvent. In this way all sets of degenerate 
   *  transformations are treated alike (empty set, data with low variability 
   *  for example the same transform repeated many times).*/
  void RequestComputeCalibration();

  /** This method is used to request the calibration transformation.
   *  The method should only be invoked after a successful calibration. 
   *  It generates two events: CoordinateSystemTransformToResult, and 
   *  TransformNotAvailableEvent, respectively denoting that a calibration 
   *  transform is and isn't available. */
  void RequestCalibrationTransform();

  /** This method is used to request the pivot point, given in the coordinate 
   *  system in which the user supplied transforms were given.
   *  It generates two events: PointEvent, and InvalidRequestErrorEvent, 
   *  respectively denoting that the pivot point is and isn't available. */
  void RequestPivotPoint();

  /** This method is used to request the Root Mean Square Error (RMSE) of the 
   *  linear equation system used to compute the pivot point and calibration 
   *  transformation (RMSE of the vector Ax-b, see class description for more 
   *  details). It generates two events: DoubleTypeEvent, and 
   *  InvalidRequestErrorEvent, respectively denoting that the RMSE is and 
   *  isn't available. */
  void RequestCalibrationRMSE();

  /** This method sets the tolerance for the singular values of the matrix A 
   *  below which they are considered to be zero. The default setting is 
   *  PivotCalibrationAlgorithm::DEFAULT_SINGULAR_VALUE_THRESHOLD .
   *  The solution exists only if rank(A)=6 (columns are linearly independent). 
   *  The rank is evaluated using SVD(A) = USV^T, after zeroing out all 
   *  singular values (diagonal entries of S) that are less than the 
   *  tolerance. */
  void RequestSetSingularValueThreshold( double threshold );

  /** This event is generated if the pivot calibration computation fails. */
  igstkEventMacro( CalibrationFailureEvent, IGSTKEvent );

  /** This event is generated if the pivot calibration computation succeeds. */
  igstkEventMacro( CalibrationSuccessEvent, IGSTKEvent );

  /** Default threshold value under which singular values are considered to be 
   *  zero. */
  static const double DEFAULT_SINGULAR_VALUE_THRESHOLD;

protected:

  PivotCalibrationAlgorithm  ( void );
  virtual ~PivotCalibrationAlgorithm ( void );

  /** Print the object information in a stream. */
  void PrintSelf( std::ostream& os, itk::Indent indent ) const;

private:

  /** Check that there are transformations, and that their variability is 
   *  sufficient (rank(A) = 6) */
  bool CheckCalibrationDataValidity();

  /** List of state machine states */
  igstkDeclareStateMacro( Idle );
  igstkDeclareStateMacro( AttemptingToComputeCalibration );
  igstkDeclareStateMacro( CalibrationComputed );

  /** List of state machine inputs */
  igstkDeclareInputMacro( AddTransform );
  igstkDeclareInputMacro( SetSingularValueThreshold );
  igstkDeclareInputMacro( ComputeCalibration );
  igstkDeclareInputMacro( GetTransform  );
  igstkDeclareInputMacro( GetPivotPoint  );
  igstkDeclareInputMacro( GetRMSE  );
  igstkDeclareInputMacro( ResetCalibration );
  igstkDeclareInputMacro( CalibrationComputationSuccess  );
  igstkDeclareInputMacro( CalibrationComputationFailure  );

  /**List of state machine actions*/
  void ReportInvalidRequestProcessing();  
  void AddTransformProcessing();
  void SetSingularValueThresholdProcessing();
  void ComputeCalibrationProcessing();
  void ResetCalibrationProcessing();
  void ReportSuccessInCalibrationComputationProcessing();
  void ReportFailureInCalibrationComputationProcessing();
  void GetTransformProcessing();
  void GetPivotPointProcessing();
  void GetRMSEProcessing();

  //transformations used for pivot calibration
  TransformContainerType m_Transforms;
  //transformations the user wants to add, because of the way the 
  //state machine works we need to first store them in 
  //a temporary variable. They will be moved to the m_Transforms 
  //container only if the state machine is in a state that
  //enables adding transformations
  TransformContainerType m_TmpTransforms;

  //computed translation between tracked coordinate system and pivot 
  //point
  TransformType m_Transform;

  //computed pivot point in the tracker's coordinate system
  itk::Point< double,3 > m_PivotPoint;

  //root mean squared error of the vector [Ax-b]
  double m_RMSE;

  //below this threshold the singular values of SVD(A) are set to zero
  double m_SingularValueThreshold;
  double m_TmpSingularValueThreshold;

};

} // end namespace igstk

#endif //__igstkPivotCalibrationAlgorithm_h