This file is indexed.

/usr/lib/hugs/packages/fgl/Data/Graph/Inductive/Query/Monad.hs is in libhugs-fgl-bundled 98.200609.21-5.3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
-- (c) 2002 by Martin Erwig [see file COPYRIGHT]
-- | Monadic Graph Algorithms

module Data.Graph.Inductive.Query.Monad(
    -- * Additional Graph Utilities
    mapFst, mapSnd, (><), orP,
    -- * Graph Transformer Monad
    GT(..), apply, apply', applyWith, applyWith', runGT, condMGT', recMGT',
    condMGT, recMGT,
    -- * Graph Computations Based on Graph Monads
    -- ** Monadic Graph Accessing Functions
    getNode, getContext, getNodes', getNodes, sucGT, sucM,
    -- ** Derived Graph Recursion Operators
    graphRec, graphRec', graphUFold,
    -- * Examples: Graph Algorithms as Instances of Recursion Operators
    -- ** Instances of graphRec
    graphNodesM0, graphNodesM, graphNodes, graphFilterM, graphFilter,
    -- * Example: Monadic DFS Algorithm(s)
    dfsGT, dfsM, dfsM', dffM, graphDff, graphDff',
) where


-- Why all this?
--
-- graph monad ensures single-threaded access 
--  ==> we can safely use imperative updates in the graph implementation
--

import Data.Tree
--import Control.Monad (liftM)

import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Monad

-- some additional (graph) utilities
--
mapFst :: (a -> b) -> (a, c) -> (b, c)
mapFst f (x,y) = (f x,y)
mapSnd :: (a -> b) -> (c, a) -> (c, b)
mapSnd f (x,y) = (x,f y)

infixr 8 ><
(><) :: (a -> b) -> (c -> d) -> (a, c) -> (b, d)
(f >< g) (x,y) = (f x,g y)

orP :: (a -> Bool) -> (b -> Bool) -> (a,b) -> Bool
orP p q (x,y) = p x || q y

----------------------------------------------------------------------
-- "wrapped" state transformer monad   ==
-- monadic graph transformer monad
----------------------------------------------------------------------

data GT m g a = MGT (m g -> m (a,g))

apply :: GT m g a -> m g -> m (a,g)
apply (MGT f) mg = f mg

apply' :: Monad m => GT m g a -> g -> m (a,g)
apply' gt = apply gt . return

applyWith :: Monad m => (a -> b) -> GT m g a -> m g -> m (b,g)
applyWith h (MGT f) gm = do {(x,g) <- f gm; return (h x,g)}

applyWith' :: Monad m => (a -> b) -> GT m g a -> g -> m (b,g)
applyWith' h gt = applyWith h gt . return

runGT :: Monad m => GT m g a -> m g -> m a
runGT gt mg = do {(x,_) <- apply gt mg; return x}


instance Monad m => Monad (GT m g) where
  return x = MGT (\mg->do {g<-mg; return (x,g)})
  f >>= h  = MGT (\mg->do {(x,g)<-apply f mg; apply' (h x) g})

condMGT' :: Monad m => (s -> Bool) -> GT m s a -> GT m s a -> GT m s a
condMGT' p f g = MGT (\mg->do {h<-mg; if p h then apply f mg else apply g mg})
 
recMGT' :: Monad m => (s -> Bool) -> GT m s a -> (a -> b -> b) -> b -> GT m s b
recMGT' p mg f u = condMGT' p (return u) 
                            (do {x<-mg;y<-recMGT' p mg f u;return (f x y)})

condMGT :: Monad m => (m s -> m Bool) -> GT m s a -> GT m s a -> GT m s a
condMGT p f g = MGT (\mg->do {b<-p mg; if b then apply f mg else apply g mg})

recMGT :: Monad m => (m s -> m Bool) -> GT m s a -> (a -> b -> b) -> b -> GT m s b
recMGT p mg f u = condMGT p (return u) 
                          (do {x<-mg;y<-recMGT p mg f u;return (f x y)})


----------------------------------------------------------------------
-- graph computations based on state monads/graph monads
----------------------------------------------------------------------


-- some monadic graph accessing functions
-- 
getNode :: GraphM m gr => GT m (gr a b) Node
getNode = MGT (\mg->do {((_,v,_,_),g) <- matchAnyM mg; return (v,g)})

getContext :: GraphM m gr => GT m (gr a b) (Context a b)
getContext = MGT matchAnyM

-- some functions defined by using the do-notation explicitly
-- Note: most of these can be expressed as an instance of graphRec
-- 
getNodes' :: (Graph gr,GraphM m gr) => GT m (gr a b) [Node]
getNodes' = condMGT' isEmpty (return [])
                             (do v  <- getNode
                                 vs <- getNodes
                                 return (v:vs))

getNodes :: GraphM m gr => GT m (gr a b) [Node]
getNodes = condMGT isEmptyM (return [])
                            (do v  <- getNode
                                vs <- getNodes
                                return (v:vs))

sucGT :: GraphM m gr => Node -> GT m (gr a b) (Maybe [Node])
sucGT v = MGT (\mg->do (c,g) <- matchM v mg
                       case c of
                         Just (_,_,_,s) -> return (Just (map snd s),g)
                         Nothing        -> return (Nothing,g)
              )

sucM :: GraphM m gr => Node -> m (gr a b) -> m (Maybe [Node])
sucM v = runGT (sucGT v)



----------------------------------------------------------------------
-- some derived graph recursion operators
----------------------------------------------------------------------

-- 
-- graphRec :: GraphMonad a b c -> (c -> d -> d) -> d -> GraphMonad a b d
-- graphRec f g u = cond isEmpty (return u) 
--                               (do x <- f
--                                   y <- graphRec f g u
--                                   return (g x y))

-- | encapsulates a simple recursion schema on graphs
graphRec :: GraphM m gr => GT m (gr a b) c -> 
                           (c -> d -> d) -> d -> GT m (gr a b) d
graphRec = recMGT isEmptyM

graphRec' :: (Graph gr,GraphM m gr) => GT m (gr a b) c -> 
                           (c -> d -> d) -> d -> GT m (gr a b) d
graphRec' = recMGT' isEmpty

graphUFold :: GraphM m gr => (Context a b -> c -> c) -> c -> GT m (gr a b) c
graphUFold = graphRec getContext



----------------------------------------------------------------------
-- Examples: graph algorithms as instances of recursion operators
----------------------------------------------------------------------

-- instances of graphRec
-- 
graphNodesM0 :: GraphM m gr => GT m (gr a b) [Node]
graphNodesM0 = graphRec getNode (:) []

graphNodesM :: GraphM m gr => GT m (gr a b) [Node]
graphNodesM = graphUFold (\(_,v,_,_)->(v:)) []

graphNodes :: GraphM m gr => m (gr a b) -> m [Node]
graphNodes = runGT graphNodesM

graphFilterM :: GraphM m gr => (Context a b -> Bool) ->
                              GT m (gr a b) [Context a b]
graphFilterM p = graphUFold (\c cs->if p c then c:cs else cs) []

graphFilter :: GraphM m gr => (Context a b -> Bool) -> m (gr a b) -> m [Context a b]
graphFilter p = runGT (graphFilterM p)




----------------------------------------------------------------------
-- Example: monadic dfs algorithm(s)
----------------------------------------------------------------------

-- | Monadic graph algorithms are defined in two steps:
--
--  (1) define the (possibly parameterized) graph transformer (e.g., dfsGT)
--  (2) run the graph transformer (applied to arguments) (e.g., dfsM)
--

dfsGT :: GraphM m gr => [Node] -> GT m (gr a b) [Node]
dfsGT []     = return []
dfsGT (v:vs) = MGT (\mg->
               do (mc,g') <- matchM v mg
                  case mc of
                    Just (_,_,_,s) -> applyWith' (v:) (dfsGT (map snd s++vs)) g'
                    Nothing        -> apply' (dfsGT vs) g'  )

-- | depth-first search yielding number of nodes
dfsM :: GraphM m gr => [Node] -> m (gr a b) -> m [Node]
dfsM vs = runGT (dfsGT vs)

dfsM' :: GraphM m gr => m (gr a b) -> m [Node]
dfsM' mg = do {vs <- nodesM mg; runGT (dfsGT vs) mg}


-- | depth-first search yielding dfs forest
dffM :: GraphM m gr => [Node] -> GT m (gr a b) [Tree Node]
dffM vs = MGT (\mg->
          do g<-mg
             b<-isEmptyM mg
             if b||null vs then return ([],g) else 
                let (v:vs') = vs in
                do (mc,g1) <- matchM v mg
                   case mc of
                     Nothing -> apply (dffM vs') (return g1)
                     Just c  -> do (ts, g2) <- apply (dffM (suc' c)) (return g1)
                                   (ts',g3) <- apply (dffM vs') (return g2)
                                   return (Node (node' c) ts:ts',g3)
          )

graphDff :: GraphM m gr => [Node] -> m (gr a b) -> m [Tree Node]
graphDff vs = runGT (dffM vs)

graphDff' :: GraphM m gr => m (gr a b) -> m [Tree Node]
graphDff' mg = do {vs <- nodesM mg; runGT (dffM vs) mg}