This file is indexed.

/usr/share/ada/adainclude/gnatvsn/urealp.adb is in libgnatvsn4.6-dev 4.6.3-1ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                               U R E A L P                                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2010, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Alloc;
with Output;  use Output;
with Table;
with Tree_IO; use Tree_IO;

package body Urealp is

   Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
   --  First subscript allocated in Ureal table (note that we can't just
   --  add 1 to No_Ureal, since "+" means something different for Ureals!

   type Ureal_Entry is record
      Num  : Uint;
      --  Numerator (always non-negative)

      Den : Uint;
      --  Denominator (always non-zero, always positive if base is zero)

      Rbase : Nat;
      --  Base value. If Rbase is zero, then the value is simply Num / Den.
      --  If Rbase is non-zero, then the value is Num / (Rbase ** Den)

      Negative : Boolean;
      --  Flag set if value is negative
   end record;

   --  The following representation clause ensures that the above record
   --  has no holes. We do this so that when instances of this record are
   --  written by Tree_Gen, we do not write uninitialized values to the file.

   for Ureal_Entry use record
      Num      at  0 range 0 .. 31;
      Den      at  4 range 0 .. 31;
      Rbase    at  8 range 0 .. 31;
      Negative at 12 range 0 .. 31;
   end record;

   for Ureal_Entry'Size use 16 * 8;
   --  This ensures that we did not leave out any fields

   package Ureals is new Table.Table (
     Table_Component_Type => Ureal_Entry,
     Table_Index_Type     => Ureal'Base,
     Table_Low_Bound      => Ureal_First_Entry,
     Table_Initial        => Alloc.Ureals_Initial,
     Table_Increment      => Alloc.Ureals_Increment,
     Table_Name           => "Ureals");

   --  The following universal reals are the values returned by the constant
   --  functions. They are initialized by the initialization procedure.

   UR_0       : Ureal;
   UR_M_0     : Ureal;
   UR_Tenth   : Ureal;
   UR_Half    : Ureal;
   UR_1       : Ureal;
   UR_2       : Ureal;
   UR_10      : Ureal;
   UR_10_36   : Ureal;
   UR_M_10_36 : Ureal;
   UR_100     : Ureal;
   UR_2_128   : Ureal;
   UR_2_80    : Ureal;
   UR_2_M_128 : Ureal;
   UR_2_M_80  : Ureal;

   Num_Ureal_Constants : constant := 10;
   --  This is used for an assertion check in Tree_Read and Tree_Write to
   --  help remember to add values to these routines when we add to the list.

   Normalized_Real : Ureal := No_Ureal;
   --  Used to memoize Norm_Num and Norm_Den, if either of these functions
   --  is called, this value is set and Normalized_Entry contains the result
   --  of the normalization. On subsequent calls, this is used to avoid the
   --  call to Normalize if it has already been made.

   Normalized_Entry : Ureal_Entry;
   --  Entry built by most recent call to Normalize

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Decimal_Exponent_Hi (V : Ureal) return Int;
   --  Returns an estimate of the exponent of Val represented as a normalized
   --  decimal number (non-zero digit before decimal point), The estimate is
   --  either correct, or high, but never low. The accuracy of the estimate
   --  affects only the efficiency of the comparison routines.

   function Decimal_Exponent_Lo (V : Ureal) return Int;
   --  Returns an estimate of the exponent of Val represented as a normalized
   --  decimal number (non-zero digit before decimal point), The estimate is
   --  either correct, or low, but never high. The accuracy of the estimate
   --  affects only the efficiency of the comparison routines.

   function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
   --  U is a Ureal entry for which the base value is non-zero, the value
   --  returned is the equivalent decimal exponent value, i.e. the value of
   --  Den, adjusted as though the base were base 10. The value is rounded
   --  to the nearest integer, and so can be one off.

   function Is_Integer (Num, Den : Uint) return Boolean;
   --  Return true if the real quotient of Num / Den is an integer value

   function Normalize (Val : Ureal_Entry) return Ureal_Entry;
   --  Normalizes the Ureal_Entry by reducing it to lowest terms (with a base
   --  value of 0).

   function Same (U1, U2 : Ureal) return Boolean;
   pragma Inline (Same);
   --  Determines if U1 and U2 are the same Ureal. Note that we cannot use
   --  the equals operator for this test, since that tests for equality, not
   --  identity.

   function Store_Ureal (Val : Ureal_Entry) return Ureal;
   --  This store a new entry in the universal reals table and return its index
   --  in the table.

   function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal;
   pragma Inline (Store_Ureal_Normalized);
   --  Like Store_Ureal, but normalizes its operand first.

   -------------------------
   -- Decimal_Exponent_Hi --
   -------------------------

   function Decimal_Exponent_Hi (V : Ureal) return Int is
      Val : constant Ureal_Entry := Ureals.Table (V);

   begin
      --  Zero always returns zero

      if UR_Is_Zero (V) then
         return 0;

      --  For numbers in rational form, get the maximum number of digits in the
      --  numerator and the minimum number of digits in the denominator, and
      --  subtract. For example:

      --     1000 / 99 = 1.010E+1
      --     9999 / 10 = 9.999E+2

      --  This estimate may of course be high, but that is acceptable

      elsif Val.Rbase = 0 then
         return UI_Decimal_Digits_Hi (Val.Num) -
                UI_Decimal_Digits_Lo (Val.Den);

      --  For based numbers, just subtract the decimal exponent from the
      --  high estimate of the number of digits in the numerator and add
      --  one to accommodate possible round off errors for non-decimal
      --  bases. For example:

      --     1_500_000 / 10**4 = 1.50E-2

      else -- Val.Rbase /= 0
         return UI_Decimal_Digits_Hi (Val.Num) -
                Equivalent_Decimal_Exponent (Val) + 1;
      end if;
   end Decimal_Exponent_Hi;

   -------------------------
   -- Decimal_Exponent_Lo --
   -------------------------

   function Decimal_Exponent_Lo (V : Ureal) return Int is
      Val : constant Ureal_Entry := Ureals.Table (V);

   begin
      --  Zero always returns zero

      if UR_Is_Zero (V) then
         return 0;

      --  For numbers in rational form, get min digits in numerator, max digits
      --  in denominator, and subtract and subtract one more for possible loss
      --  during the division. For example:

      --     1000 / 99 = 1.010E+1
      --     9999 / 10 = 9.999E+2

      --  This estimate may of course be low, but that is acceptable

      elsif Val.Rbase = 0 then
         return UI_Decimal_Digits_Lo (Val.Num) -
                UI_Decimal_Digits_Hi (Val.Den) - 1;

      --  For based numbers, just subtract the decimal exponent from the
      --  low estimate of the number of digits in the numerator and subtract
      --  one to accommodate possible round off errors for non-decimal
      --  bases. For example:

      --     1_500_000 / 10**4 = 1.50E-2

      else -- Val.Rbase /= 0
         return UI_Decimal_Digits_Lo (Val.Num) -
                Equivalent_Decimal_Exponent (Val) - 1;
      end if;
   end Decimal_Exponent_Lo;

   -----------------
   -- Denominator --
   -----------------

   function Denominator (Real : Ureal) return Uint is
   begin
      return Ureals.Table (Real).Den;
   end Denominator;

   ---------------------------------
   -- Equivalent_Decimal_Exponent --
   ---------------------------------

   function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is

      --  The following table is a table of logs to the base 10

      Logs : constant array (Nat range 1 .. 16) of Long_Float := (
                1 => 0.000000000000000,
                2 => 0.301029995663981,
                3 => 0.477121254719662,
                4 => 0.602059991327962,
                5 => 0.698970004336019,
                6 => 0.778151250383644,
                7 => 0.845098040014257,
                8 => 0.903089986991944,
                9 => 0.954242509439325,
               10 => 1.000000000000000,
               11 => 1.041392685158230,
               12 => 1.079181246047620,
               13 => 1.113943352306840,
               14 => 1.146128035678240,
               15 => 1.176091259055680,
               16 => 1.204119982655920);

   begin
      pragma Assert (U.Rbase /= 0);
      return Int (Long_Float (UI_To_Int (U.Den)) * Logs (U.Rbase));
   end Equivalent_Decimal_Exponent;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      Ureals.Init;
      UR_0       := UR_From_Components (Uint_0, Uint_1,         0, False);
      UR_M_0     := UR_From_Components (Uint_0, Uint_1,         0, True);
      UR_Half    := UR_From_Components (Uint_1, Uint_1,         2, False);
      UR_Tenth   := UR_From_Components (Uint_1, Uint_1,        10, False);
      UR_1       := UR_From_Components (Uint_1, Uint_1,         0, False);
      UR_2       := UR_From_Components (Uint_1, Uint_Minus_1,   2, False);
      UR_10      := UR_From_Components (Uint_1, Uint_Minus_1,  10, False);
      UR_10_36   := UR_From_Components (Uint_1, Uint_Minus_36, 10, False);
      UR_M_10_36 := UR_From_Components (Uint_1, Uint_Minus_36, 10, True);
      UR_100     := UR_From_Components (Uint_1, Uint_Minus_2,  10, False);
      UR_2_128   := UR_From_Components (Uint_1, Uint_Minus_128, 2, False);
      UR_2_M_128 := UR_From_Components (Uint_1, Uint_128,       2, False);
      UR_2_80    := UR_From_Components (Uint_1, Uint_Minus_80,  2, False);
      UR_2_M_80  := UR_From_Components (Uint_1, Uint_80,        2, False);
   end Initialize;

   ----------------
   -- Is_Integer --
   ----------------

   function Is_Integer (Num, Den : Uint) return Boolean is
   begin
      return (Num / Den) * Den = Num;
   end Is_Integer;

   ----------
   -- Mark --
   ----------

   function Mark return Save_Mark is
   begin
      return Save_Mark (Ureals.Last);
   end Mark;

   --------------
   -- Norm_Den --
   --------------

   function Norm_Den (Real : Ureal) return Uint is
   begin
      if not Same (Real, Normalized_Real) then
         Normalized_Real  := Real;
         Normalized_Entry := Normalize (Ureals.Table (Real));
      end if;

      return Normalized_Entry.Den;
   end Norm_Den;

   --------------
   -- Norm_Num --
   --------------

   function Norm_Num (Real : Ureal) return Uint is
   begin
      if not Same (Real, Normalized_Real) then
         Normalized_Real  := Real;
         Normalized_Entry := Normalize (Ureals.Table (Real));
      end if;

      return Normalized_Entry.Num;
   end Norm_Num;

   ---------------
   -- Normalize --
   ---------------

   function Normalize (Val : Ureal_Entry) return Ureal_Entry is
      J   : Uint;
      K   : Uint;
      Tmp : Uint;
      Num : Uint;
      Den : Uint;
      M   : constant Uintp.Save_Mark := Uintp.Mark;

   begin
      --  Start by setting J to the greatest of the absolute values of the
      --  numerator and the denominator (taking into account the base value),
      --  and K to the lesser of the two absolute values. The gcd of Num and
      --  Den is the gcd of J and K.

      if Val.Rbase = 0 then
         J := Val.Num;
         K := Val.Den;

      elsif Val.Den < 0 then
         J := Val.Num * Val.Rbase ** (-Val.Den);
         K := Uint_1;

      else
         J := Val.Num;
         K := Val.Rbase ** Val.Den;
      end if;

      Num := J;
      Den := K;

      if K > J then
         Tmp := J;
         J := K;
         K := Tmp;
      end if;

      J := UI_GCD (J, K);
      Num := Num / J;
      Den := Den / J;
      Uintp.Release_And_Save (M, Num, Den);

      --  Divide numerator and denominator by gcd and return result

      return (Num      => Num,
              Den      => Den,
              Rbase    => 0,
              Negative => Val.Negative);
   end Normalize;

   ---------------
   -- Numerator --
   ---------------

   function Numerator (Real : Ureal) return Uint is
   begin
      return Ureals.Table (Real).Num;
   end Numerator;

   --------
   -- pr --
   --------

   procedure pr (Real : Ureal) is
   begin
      UR_Write (Real);
      Write_Eol;
   end pr;

   -----------
   -- Rbase --
   -----------

   function Rbase (Real : Ureal) return Nat is
   begin
      return Ureals.Table (Real).Rbase;
   end Rbase;

   -------------
   -- Release --
   -------------

   procedure Release (M : Save_Mark) is
   begin
      Ureals.Set_Last (Ureal (M));
   end Release;

   ----------
   -- Same --
   ----------

   function Same (U1, U2 : Ureal) return Boolean is
   begin
      return Int (U1) = Int (U2);
   end Same;

   -----------------
   -- Store_Ureal --
   -----------------

   function Store_Ureal (Val : Ureal_Entry) return Ureal is
   begin
      Ureals.Append (Val);

      --  Normalize representation of signed values

      if Val.Num < 0 then
         Ureals.Table (Ureals.Last).Negative := True;
         Ureals.Table (Ureals.Last).Num := -Val.Num;
      end if;

      return Ureals.Last;
   end Store_Ureal;

   ----------------------------
   -- Store_Ureal_Normalized --
   ----------------------------

   function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal is
   begin
      return Store_Ureal (Normalize (Val));
   end Store_Ureal_Normalized;

   ---------------
   -- Tree_Read --
   ---------------

   procedure Tree_Read is
   begin
      pragma Assert (Num_Ureal_Constants = 10);

      Ureals.Tree_Read;
      Tree_Read_Int (Int (UR_0));
      Tree_Read_Int (Int (UR_M_0));
      Tree_Read_Int (Int (UR_Tenth));
      Tree_Read_Int (Int (UR_Half));
      Tree_Read_Int (Int (UR_1));
      Tree_Read_Int (Int (UR_2));
      Tree_Read_Int (Int (UR_10));
      Tree_Read_Int (Int (UR_100));
      Tree_Read_Int (Int (UR_2_128));
      Tree_Read_Int (Int (UR_2_M_128));

      --  Clear the normalization cache

      Normalized_Real := No_Ureal;
   end Tree_Read;

   ----------------
   -- Tree_Write --
   ----------------

   procedure Tree_Write is
   begin
      pragma Assert (Num_Ureal_Constants = 10);

      Ureals.Tree_Write;
      Tree_Write_Int (Int (UR_0));
      Tree_Write_Int (Int (UR_M_0));
      Tree_Write_Int (Int (UR_Tenth));
      Tree_Write_Int (Int (UR_Half));
      Tree_Write_Int (Int (UR_1));
      Tree_Write_Int (Int (UR_2));
      Tree_Write_Int (Int (UR_10));
      Tree_Write_Int (Int (UR_100));
      Tree_Write_Int (Int (UR_2_128));
      Tree_Write_Int (Int (UR_2_M_128));
   end Tree_Write;

   ------------
   -- UR_Abs --
   ------------

   function UR_Abs (Real : Ureal) return Ureal is
      Val : constant Ureal_Entry := Ureals.Table (Real);

   begin
      return Store_Ureal
               ((Num      => Val.Num,
                 Den      => Val.Den,
                 Rbase    => Val.Rbase,
                 Negative => False));
   end UR_Abs;

   ------------
   -- UR_Add --
   ------------

   function UR_Add (Left : Uint; Right : Ureal) return Ureal is
   begin
      return UR_From_Uint (Left) + Right;
   end UR_Add;

   function UR_Add (Left : Ureal; Right : Uint) return Ureal is
   begin
      return Left + UR_From_Uint (Right);
   end UR_Add;

   function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
      Lval : Ureal_Entry := Ureals.Table (Left);
      Rval : Ureal_Entry := Ureals.Table (Right);
      Num  : Uint;

   begin
      --  Note, in the temporary Ureal_Entry values used in this procedure,
      --  we store the sign as the sign of the numerator (i.e. xxx.Num may
      --  be negative, even though in stored entries this can never be so)

      if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
         declare
            Opd_Min, Opd_Max   : Ureal_Entry;
            Exp_Min, Exp_Max   : Uint;

         begin
            if Lval.Negative then
               Lval.Num := (-Lval.Num);
            end if;

            if Rval.Negative then
               Rval.Num := (-Rval.Num);
            end if;

            if Lval.Den < Rval.Den then
               Exp_Min := Lval.Den;
               Exp_Max := Rval.Den;
               Opd_Min := Lval;
               Opd_Max := Rval;
            else
               Exp_Min := Rval.Den;
               Exp_Max := Lval.Den;
               Opd_Min := Rval;
               Opd_Max := Lval;
            end if;

            Num :=
              Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;

            if Num = 0 then
               return Store_Ureal
                        ((Num      => Uint_0,
                          Den      => Uint_1,
                          Rbase    => 0,
                          Negative => Lval.Negative));

            else
               return Store_Ureal
                        ((Num      => abs Num,
                          Den      => Exp_Max,
                          Rbase    => Lval.Rbase,
                          Negative => (Num < 0)));
            end if;
         end;

      else
         declare
            Ln : Ureal_Entry := Normalize (Lval);
            Rn : Ureal_Entry := Normalize (Rval);

         begin
            if Ln.Negative then
               Ln.Num := (-Ln.Num);
            end if;

            if Rn.Negative then
               Rn.Num := (-Rn.Num);
            end if;

            Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);

            if Num = 0 then
               return Store_Ureal
                        ((Num      => Uint_0,
                          Den      => Uint_1,
                          Rbase    => 0,
                          Negative => Lval.Negative));

            else
               return Store_Ureal_Normalized
                        ((Num      => abs Num,
                          Den      => Ln.Den * Rn.Den,
                          Rbase    => 0,
                          Negative => (Num < 0)));
            end if;
         end;
      end if;
   end UR_Add;

   ----------------
   -- UR_Ceiling --
   ----------------

   function UR_Ceiling (Real : Ureal) return Uint is
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
   begin
      if Val.Negative then
         return UI_Negate (Val.Num / Val.Den);
      else
         return (Val.Num + Val.Den - 1) / Val.Den;
      end if;
   end UR_Ceiling;

   ------------
   -- UR_Div --
   ------------

   function UR_Div (Left : Uint; Right : Ureal) return Ureal is
   begin
      return UR_From_Uint (Left) / Right;
   end UR_Div;

   function UR_Div (Left : Ureal; Right : Uint) return Ureal is
   begin
      return Left / UR_From_Uint (Right);
   end UR_Div;

   function UR_Div (Left, Right : Ureal) return Ureal is
      Lval : constant Ureal_Entry := Ureals.Table (Left);
      Rval : constant Ureal_Entry := Ureals.Table (Right);
      Rneg : constant Boolean     := Rval.Negative xor Lval.Negative;

   begin
      pragma Assert (Rval.Num /= Uint_0);

      if Lval.Rbase = 0 then
         if Rval.Rbase = 0 then
            return Store_Ureal_Normalized
                     ((Num      => Lval.Num * Rval.Den,
                       Den      => Lval.Den * Rval.Num,
                       Rbase    => 0,
                       Negative => Rneg));

         elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
            return Store_Ureal
                     ((Num      => Lval.Num / (Rval.Num * Lval.Den),
                       Den      => (-Rval.Den),
                       Rbase    => Rval.Rbase,
                       Negative => Rneg));

         elsif Rval.Den < 0 then
            return Store_Ureal_Normalized
                     ((Num      => Lval.Num,
                       Den      => Rval.Rbase ** (-Rval.Den) *
                                   Rval.Num *
                                   Lval.Den,
                       Rbase    => 0,
                       Negative => Rneg));

         else
            return Store_Ureal_Normalized
                     ((Num      => Lval.Num * Rval.Rbase ** Rval.Den,
                       Den      => Rval.Num * Lval.Den,
                       Rbase    => 0,
                       Negative => Rneg));
         end if;

      elsif Is_Integer (Lval.Num, Rval.Num) then
         if Rval.Rbase = Lval.Rbase then
            return Store_Ureal
                     ((Num      => Lval.Num / Rval.Num,
                       Den      => Lval.Den - Rval.Den,
                       Rbase    => Lval.Rbase,
                       Negative => Rneg));

         elsif Rval.Rbase = 0 then
            return Store_Ureal
                     ((Num      => (Lval.Num / Rval.Num) * Rval.Den,
                       Den      => Lval.Den,
                       Rbase    => Lval.Rbase,
                       Negative => Rneg));

         elsif Rval.Den < 0 then
            declare
               Num, Den : Uint;

            begin
               if Lval.Den < 0 then
                  Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
                  Den := Rval.Rbase ** (-Rval.Den);
               else
                  Num := Lval.Num / Rval.Num;
                  Den := (Lval.Rbase ** Lval.Den) *
                         (Rval.Rbase ** (-Rval.Den));
               end if;

               return Store_Ureal
                        ((Num      => Num,
                          Den      => Den,
                          Rbase    => 0,
                          Negative => Rneg));
            end;

         else
            return Store_Ureal
                     ((Num      => (Lval.Num / Rval.Num) *
                                   (Rval.Rbase ** Rval.Den),
                       Den      => Lval.Den,
                       Rbase    => Lval.Rbase,
                       Negative => Rneg));
         end if;

      else
         declare
            Num, Den : Uint;

         begin
            if Lval.Den < 0 then
               Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
               Den := Rval.Num;
            else
               Num := Lval.Num;
               Den := Rval.Num * (Lval.Rbase ** Lval.Den);
            end if;

            if Rval.Rbase /= 0 then
               if Rval.Den < 0 then
                  Den := Den * (Rval.Rbase ** (-Rval.Den));
               else
                  Num := Num * (Rval.Rbase ** Rval.Den);
               end if;

            else
               Num := Num * Rval.Den;
            end if;

            return Store_Ureal_Normalized
                     ((Num      => Num,
                       Den      => Den,
                       Rbase    => 0,
                       Negative => Rneg));
         end;
      end if;
   end UR_Div;

   -----------
   -- UR_Eq --
   -----------

   function UR_Eq (Left, Right : Ureal) return Boolean is
   begin
      return not UR_Ne (Left, Right);
   end UR_Eq;

   ---------------------
   -- UR_Exponentiate --
   ---------------------

   function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
      X    : constant Uint := abs N;
      Bas  : Ureal;
      Val  : Ureal_Entry;
      Neg  : Boolean;
      IBas : Uint;

   begin
      --  If base is negative, then the resulting sign depends on whether
      --  the exponent is even or odd (even => positive, odd = negative)

      if UR_Is_Negative (Real) then
         Neg := (N mod 2) /= 0;
         Bas := UR_Negate (Real);
      else
         Neg := False;
         Bas := Real;
      end if;

      Val := Ureals.Table (Bas);

      --  If the base is a small integer, then we can return the result in
      --  exponential form, which can save a lot of time for junk exponents.

      IBas := UR_Trunc (Bas);

      if IBas <= 16
        and then UR_From_Uint (IBas) = Bas
      then
         return Store_Ureal
                  ((Num      => Uint_1,
                    Den      => -N,
                    Rbase    => UI_To_Int (UR_Trunc (Bas)),
                    Negative => Neg));

      --  If the exponent is negative then we raise the numerator and the
      --  denominator (after normalization) to the absolute value of the
      --  exponent and we return the reciprocal. An assert error will happen
      --  if the numerator is zero.

      elsif N < 0 then
         pragma Assert (Val.Num /= 0);
         Val := Normalize (Val);

         return Store_Ureal
                  ((Num      => Val.Den ** X,
                    Den      => Val.Num ** X,
                    Rbase    => 0,
                    Negative => Neg));

      --  If positive, we distinguish the case when the base is not zero, in
      --  which case the new denominator is just the product of the old one
      --  with the exponent,

      else
         if Val.Rbase /= 0 then

            return Store_Ureal
                     ((Num      => Val.Num ** X,
                       Den      => Val.Den * X,
                       Rbase    => Val.Rbase,
                       Negative => Neg));

         --  And when the base is zero, in which case we exponentiate
         --  the old denominator.

         else
            return Store_Ureal
                     ((Num      => Val.Num ** X,
                       Den      => Val.Den ** X,
                       Rbase    => 0,
                       Negative => Neg));
         end if;
      end if;
   end UR_Exponentiate;

   --------------
   -- UR_Floor --
   --------------

   function UR_Floor (Real : Ureal) return Uint is
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
   begin
      if Val.Negative then
         return UI_Negate ((Val.Num + Val.Den - 1) / Val.Den);
      else
         return Val.Num / Val.Den;
      end if;
   end UR_Floor;

   ------------------------
   -- UR_From_Components --
   ------------------------

   function UR_From_Components
     (Num      : Uint;
      Den      : Uint;
      Rbase    : Nat := 0;
      Negative : Boolean := False)
      return     Ureal
   is
   begin
      return Store_Ureal
               ((Num      => Num,
                 Den      => Den,
                 Rbase    => Rbase,
                 Negative => Negative));
   end UR_From_Components;

   ------------------
   -- UR_From_Uint --
   ------------------

   function UR_From_Uint (UI : Uint) return Ureal is
   begin
      return UR_From_Components
               (abs UI, Uint_1, Negative => (UI < 0));
   end UR_From_Uint;

   -----------
   -- UR_Ge --
   -----------

   function UR_Ge (Left, Right : Ureal) return Boolean is
   begin
      return not (Left < Right);
   end UR_Ge;

   -----------
   -- UR_Gt --
   -----------

   function UR_Gt (Left, Right : Ureal) return Boolean is
   begin
      return (Right < Left);
   end UR_Gt;

   --------------------
   -- UR_Is_Negative --
   --------------------

   function UR_Is_Negative (Real : Ureal) return Boolean is
   begin
      return Ureals.Table (Real).Negative;
   end UR_Is_Negative;

   --------------------
   -- UR_Is_Positive --
   --------------------

   function UR_Is_Positive (Real : Ureal) return Boolean is
   begin
      return not Ureals.Table (Real).Negative
        and then Ureals.Table (Real).Num /= 0;
   end UR_Is_Positive;

   ----------------
   -- UR_Is_Zero --
   ----------------

   function UR_Is_Zero (Real : Ureal) return Boolean is
   begin
      return Ureals.Table (Real).Num = 0;
   end UR_Is_Zero;

   -----------
   -- UR_Le --
   -----------

   function UR_Le (Left, Right : Ureal) return Boolean is
   begin
      return not (Right < Left);
   end UR_Le;

   -----------
   -- UR_Lt --
   -----------

   function UR_Lt (Left, Right : Ureal) return Boolean is
   begin
      --  An operand is not less than itself

      if Same (Left, Right) then
         return False;

      --  Deal with zero cases

      elsif UR_Is_Zero (Left) then
         return UR_Is_Positive (Right);

      elsif UR_Is_Zero (Right) then
         return Ureals.Table (Left).Negative;

      --  Different signs are decisive (note we dealt with zero cases)

      elsif Ureals.Table (Left).Negative
        and then not Ureals.Table (Right).Negative
      then
         return True;

      elsif not Ureals.Table (Left).Negative
        and then Ureals.Table (Right).Negative
      then
         return False;

      --  Signs are same, do rapid check based on worst case estimates of
      --  decimal exponent, which will often be decisive. Precise test
      --  depends on whether operands are positive or negative.

      elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
         return UR_Is_Positive (Left);

      elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
         return UR_Is_Negative (Left);

      --  If we fall through, full gruesome test is required. This happens
      --  if the numbers are close together, or in some weird (/=10) base.

      else
         declare
            Imrk   : constant Uintp.Save_Mark  := Mark;
            Rmrk   : constant Urealp.Save_Mark := Mark;
            Lval   : Ureal_Entry;
            Rval   : Ureal_Entry;
            Result : Boolean;

         begin
            Lval := Ureals.Table (Left);
            Rval := Ureals.Table (Right);

            --  An optimization. If both numbers are based, then subtract
            --  common value of base to avoid unnecessarily giant numbers

            if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
               if Lval.Den < Rval.Den then
                  Rval.Den := Rval.Den - Lval.Den;
                  Lval.Den := Uint_0;
               else
                  Lval.Den := Lval.Den - Rval.Den;
                  Rval.Den := Uint_0;
               end if;
            end if;

            Lval := Normalize (Lval);
            Rval := Normalize (Rval);

            if Lval.Negative then
               Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
            else
               Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
            end if;

            Release (Imrk);
            Release (Rmrk);
            return Result;
         end;
      end if;
   end UR_Lt;

   ------------
   -- UR_Max --
   ------------

   function UR_Max (Left, Right : Ureal) return Ureal is
   begin
      if Left >= Right then
         return Left;
      else
         return Right;
      end if;
   end UR_Max;

   ------------
   -- UR_Min --
   ------------

   function UR_Min (Left, Right : Ureal) return Ureal is
   begin
      if Left <= Right then
         return Left;
      else
         return Right;
      end if;
   end UR_Min;

   ------------
   -- UR_Mul --
   ------------

   function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
   begin
      return UR_From_Uint (Left) * Right;
   end UR_Mul;

   function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
   begin
      return Left * UR_From_Uint (Right);
   end UR_Mul;

   function UR_Mul (Left, Right : Ureal) return Ureal is
      Lval : constant Ureal_Entry := Ureals.Table (Left);
      Rval : constant Ureal_Entry := Ureals.Table (Right);
      Num  : Uint                 := Lval.Num * Rval.Num;
      Den  : Uint;
      Rneg : constant Boolean     := Lval.Negative xor Rval.Negative;

   begin
      if Lval.Rbase = 0 then
         if Rval.Rbase = 0 then
            return Store_Ureal_Normalized
                     ((Num      => Num,
                       Den      => Lval.Den * Rval.Den,
                       Rbase    => 0,
                       Negative => Rneg));

         elsif Is_Integer (Num, Lval.Den) then
            return Store_Ureal
                     ((Num      => Num / Lval.Den,
                       Den      => Rval.Den,
                       Rbase    => Rval.Rbase,
                       Negative => Rneg));

         elsif Rval.Den < 0 then
            return Store_Ureal_Normalized
                     ((Num      => Num * (Rval.Rbase ** (-Rval.Den)),
                       Den      => Lval.Den,
                       Rbase    => 0,
                       Negative => Rneg));

         else
            return Store_Ureal_Normalized
                     ((Num      => Num,
                       Den      => Lval.Den * (Rval.Rbase ** Rval.Den),
                       Rbase    => 0,
                       Negative => Rneg));
         end if;

      elsif Lval.Rbase = Rval.Rbase then
         return Store_Ureal
                  ((Num      => Num,
                    Den      => Lval.Den + Rval.Den,
                    Rbase    => Lval.Rbase,
                    Negative => Rneg));

      elsif Rval.Rbase = 0 then
         if Is_Integer (Num, Rval.Den) then
            return Store_Ureal
                     ((Num      => Num / Rval.Den,
                       Den      => Lval.Den,
                       Rbase    => Lval.Rbase,
                       Negative => Rneg));

         elsif Lval.Den < 0 then
            return Store_Ureal_Normalized
                     ((Num      => Num * (Lval.Rbase ** (-Lval.Den)),
                       Den      => Rval.Den,
                       Rbase    => 0,
                       Negative => Rneg));

         else
            return Store_Ureal_Normalized
                     ((Num      => Num,
                       Den      => Rval.Den * (Lval.Rbase ** Lval.Den),
                       Rbase    => 0,
                       Negative => Rneg));
         end if;

      else
         Den := Uint_1;

         if Lval.Den < 0 then
            Num := Num * (Lval.Rbase ** (-Lval.Den));
         else
            Den := Den * (Lval.Rbase ** Lval.Den);
         end if;

         if Rval.Den < 0 then
            Num := Num * (Rval.Rbase ** (-Rval.Den));
         else
            Den := Den * (Rval.Rbase ** Rval.Den);
         end if;

         return Store_Ureal_Normalized
                  ((Num      => Num,
                    Den      => Den,
                    Rbase    => 0,
                    Negative => Rneg));
      end if;
   end UR_Mul;

   -----------
   -- UR_Ne --
   -----------

   function UR_Ne (Left, Right : Ureal) return Boolean is
   begin
      --  Quick processing for case of identical Ureal values (note that
      --  this also deals with comparing two No_Ureal values).

      if Same (Left, Right) then
         return False;

      --  Deal with case of one or other operand is No_Ureal, but not both

      elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
         return True;

      --  Do quick check based on number of decimal digits

      elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
            Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
      then
         return True;

      --  Otherwise full comparison is required

      else
         declare
            Imrk   : constant Uintp.Save_Mark  := Mark;
            Rmrk   : constant Urealp.Save_Mark := Mark;
            Lval   : constant Ureal_Entry := Normalize (Ureals.Table (Left));
            Rval   : constant Ureal_Entry := Normalize (Ureals.Table (Right));
            Result : Boolean;

         begin
            if UR_Is_Zero (Left) then
               return not UR_Is_Zero (Right);

            elsif UR_Is_Zero (Right) then
               return not UR_Is_Zero (Left);

            --  Both operands are non-zero

            else
               Result :=
                  Rval.Negative /= Lval.Negative
                    or else Rval.Num /= Lval.Num
                    or else Rval.Den /= Lval.Den;
               Release (Imrk);
               Release (Rmrk);
               return Result;
            end if;
         end;
      end if;
   end UR_Ne;

   ---------------
   -- UR_Negate --
   ---------------

   function UR_Negate (Real : Ureal) return Ureal is
   begin
      return Store_Ureal
               ((Num      => Ureals.Table (Real).Num,
                 Den      => Ureals.Table (Real).Den,
                 Rbase    => Ureals.Table (Real).Rbase,
                 Negative => not Ureals.Table (Real).Negative));
   end UR_Negate;

   ------------
   -- UR_Sub --
   ------------

   function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
   begin
      return UR_From_Uint (Left) + UR_Negate (Right);
   end UR_Sub;

   function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
   begin
      return Left + UR_From_Uint (-Right);
   end UR_Sub;

   function UR_Sub (Left, Right : Ureal) return Ureal is
   begin
      return Left + UR_Negate (Right);
   end UR_Sub;

   ----------------
   -- UR_To_Uint --
   ----------------

   function UR_To_Uint (Real : Ureal) return Uint is
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
      Res : Uint;

   begin
      Res := (Val.Num + (Val.Den / 2)) / Val.Den;

      if Val.Negative then
         return UI_Negate (Res);
      else
         return Res;
      end if;
   end UR_To_Uint;

   --------------
   -- UR_Trunc --
   --------------

   function UR_Trunc (Real : Ureal) return Uint is
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
   begin
      if Val.Negative then
         return -(Val.Num / Val.Den);
      else
         return Val.Num / Val.Den;
      end if;
   end UR_Trunc;

   --------------
   -- UR_Write --
   --------------

   procedure UR_Write (Real : Ureal; Brackets : Boolean := False) is
      Val : constant Ureal_Entry := Ureals.Table (Real);
      T   : Uint;

   begin
      --  If value is negative, we precede the constant by a minus sign

      if Val.Negative then
         Write_Char ('-');
      end if;

      --  Zero is zero

      if Val.Num = 0 then
         Write_Str ("0.0");

      --  For constants with a denominator of zero, the value is simply the
      --  numerator value, since we are dividing by base**0, which is 1.

      elsif Val.Den = 0 then
         UI_Write (Val.Num, Decimal);
         Write_Str (".0");

      --  Small powers of 2 get written in decimal fixed-point format

      elsif Val.Rbase = 2
        and then Val.Den <= 3
        and then Val.Den >= -16
      then
         if Val.Den = 1 then
            T := Val.Num * (10/2);
            UI_Write (T / 10, Decimal);
            Write_Char ('.');
            UI_Write (T mod 10, Decimal);

         elsif Val.Den = 2 then
            T := Val.Num * (100/4);
            UI_Write (T / 100, Decimal);
            Write_Char ('.');
            UI_Write (T mod 100 / 10, Decimal);

            if T mod 10 /= 0 then
               UI_Write (T mod 10, Decimal);
            end if;

         elsif Val.Den = 3 then
            T := Val.Num * (1000 / 8);
            UI_Write (T / 1000, Decimal);
            Write_Char ('.');
            UI_Write (T mod 1000 / 100, Decimal);

            if T mod 100 /= 0 then
               UI_Write (T mod 100 / 10, Decimal);

               if T mod 10 /= 0 then
                  UI_Write (T mod 10, Decimal);
               end if;
            end if;

         else
            UI_Write (Val.Num * (Uint_2 ** (-Val.Den)), Decimal);
            Write_Str (".0");
         end if;

      --  Constants in base 10 or 16 can be written in normal Ada literal
      --  style, as long as they fit in the UI_Image_Buffer. Using hexadecimal
      --  notation, 4 bytes are required for the 16# # part, and every fifth
      --  character is an underscore. So, a buffer of size N has room for
      --     ((N - 4) - (N - 4) / 5) * 4 bits,
      --  or at least
      --     N * 16 / 5 - 12 bits.

      elsif (Val.Rbase = 10 or else Val.Rbase = 16)
        and then Num_Bits (Val.Num) < UI_Image_Buffer'Length * 16 / 5 - 12
      then
         pragma Assert (Val.Den /= 0);

         --  Use fixed-point format for small scaling values

         if (Val.Rbase = 10 and then Val.Den < 0 and then Val.Den > -3)
              or else (Val.Rbase = 16 and then Val.Den = -1)
         then
            UI_Write (Val.Num * Val.Rbase**(-Val.Den), Decimal);
            Write_Str (".0");

         --  Write hexadecimal constants in exponential notation with a zero
         --  unit digit. This matches the Ada canonical form for floating point
         --  numbers, and also ensures that the underscores end up in the
         --  correct place.

         elsif Val.Rbase = 16 then
            UI_Image (Val.Num, Hex);
            pragma Assert (Val.Rbase = 16);

            Write_Str ("16#0.");
            Write_Str (UI_Image_Buffer (4 .. UI_Image_Length));

            --  For exponent, exclude 16# # and underscores from length

            UI_Image_Length := UI_Image_Length - 4;
            UI_Image_Length := UI_Image_Length - UI_Image_Length / 5;

            Write_Char ('E');
            UI_Write (Int (UI_Image_Length) - Val.Den, Decimal);

         elsif Val.Den = 1 then
            UI_Write (Val.Num / 10, Decimal);
            Write_Char ('.');
            UI_Write (Val.Num mod 10, Decimal);

         elsif Val.Den = 2 then
            UI_Write (Val.Num / 100, Decimal);
            Write_Char ('.');
            UI_Write (Val.Num / 10 mod 10, Decimal);
            UI_Write (Val.Num mod 10, Decimal);

         --  Else use decimal exponential format

         else
            --  Write decimal constants with a non-zero unit digit. This
            --  matches usual scientific notation.

            UI_Image (Val.Num, Decimal);
            Write_Char (UI_Image_Buffer (1));
            Write_Char ('.');

            if UI_Image_Length = 1 then
               Write_Char ('0');
            else
               Write_Str (UI_Image_Buffer (2 .. UI_Image_Length));
            end if;

            Write_Char ('E');
            UI_Write (Int (UI_Image_Length - 1) - Val.Den, Decimal);
         end if;

      --  Constants in a base other than 10 can still be easily written in
      --  normal Ada literal style if the numerator is one.

      elsif Val.Rbase /= 0 and then Val.Num = 1 then
         Write_Int (Val.Rbase);
         Write_Str ("#1.0#E");
         UI_Write (-Val.Den);

      --  Other constants with a base other than 10 are written using one
      --  of the following forms, depending on the sign of the number
      --  and the sign of the exponent (= minus denominator value)

      --    numerator.0*base**exponent
      --    numerator.0*base**-exponent

      --  And of course an exponent of 0 can be omitted

      elsif Val.Rbase /= 0 then
         if Brackets then
            Write_Char ('[');
         end if;

         UI_Write (Val.Num, Decimal);
         Write_Str (".0");

         if Val.Den /= 0 then
            Write_Char ('*');
            Write_Int (Val.Rbase);
            Write_Str ("**");

            if Val.Den <= 0 then
               UI_Write (-Val.Den, Decimal);
            else
               Write_Str ("(-");
               UI_Write (Val.Den, Decimal);
               Write_Char (')');
            end if;
         end if;

         if Brackets then
            Write_Char (']');
         end if;

      --  Rationals where numerator is divisible by denominator can be output
      --  as literals after we do the division. This includes the common case
      --  where the denominator is 1.

      elsif Val.Num mod Val.Den = 0 then
         UI_Write (Val.Num / Val.Den, Decimal);
         Write_Str (".0");

      --  Other non-based (rational) constants are written in num/den style

      else
         if Brackets then
            Write_Char ('[');
         end if;

         UI_Write (Val.Num, Decimal);
         Write_Str (".0/");
         UI_Write (Val.Den, Decimal);
         Write_Str (".0");

         if Brackets then
            Write_Char (']');
         end if;
      end if;
   end UR_Write;

   -------------
   -- Ureal_0 --
   -------------

   function Ureal_0 return Ureal is
   begin
      return UR_0;
   end Ureal_0;

   -------------
   -- Ureal_1 --
   -------------

   function Ureal_1 return Ureal is
   begin
      return UR_1;
   end Ureal_1;

   -------------
   -- Ureal_2 --
   -------------

   function Ureal_2 return Ureal is
   begin
      return UR_2;
   end Ureal_2;

   --------------
   -- Ureal_10 --
   --------------

   function Ureal_10 return Ureal is
   begin
      return UR_10;
   end Ureal_10;

   ---------------
   -- Ureal_100 --
   ---------------

   function Ureal_100 return Ureal is
   begin
      return UR_100;
   end Ureal_100;

   -----------------
   -- Ureal_10_36 --
   -----------------

   function Ureal_10_36 return Ureal is
   begin
      return UR_10_36;
   end Ureal_10_36;

   ----------------
   -- Ureal_2_80 --
   ----------------

   function Ureal_2_80 return Ureal is
   begin
      return UR_2_80;
   end Ureal_2_80;

   -----------------
   -- Ureal_2_128 --
   -----------------

   function Ureal_2_128 return Ureal is
   begin
      return UR_2_128;
   end Ureal_2_128;

   -------------------
   -- Ureal_2_M_80 --
   -------------------

   function Ureal_2_M_80 return Ureal is
   begin
      return UR_2_M_80;
   end Ureal_2_M_80;

   -------------------
   -- Ureal_2_M_128 --
   -------------------

   function Ureal_2_M_128 return Ureal is
   begin
      return UR_2_M_128;
   end Ureal_2_M_128;

   ----------------
   -- Ureal_Half --
   ----------------

   function Ureal_Half return Ureal is
   begin
      return UR_Half;
   end Ureal_Half;

   ---------------
   -- Ureal_M_0 --
   ---------------

   function Ureal_M_0 return Ureal is
   begin
      return UR_M_0;
   end Ureal_M_0;

   -------------------
   -- Ureal_M_10_36 --
   -------------------

   function Ureal_M_10_36 return Ureal is
   begin
      return UR_M_10_36;
   end Ureal_M_10_36;

   -----------------
   -- Ureal_Tenth --
   -----------------

   function Ureal_Tenth return Ureal is
   begin
      return UR_Tenth;
   end Ureal_Tenth;

end Urealp;