This file is indexed.

/usr/share/ada/adainclude/gmpada/gmp-binding.ads is in libgmpada3-dev 0.0.20110925-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
--    GMPAda, binding to the Ada Language for the GNU MultiPrecision library.
--    Copyright (C) 2007-2010 Nicolas Boulenguez <nicolas.boulenguez@free.fr>
--
--    This program is free software: you can redistribute it and/or modify
--    it under the terms of the GNU General Public License as published by
--    the Free Software Foundation, either version 3 of the License, or
--    (at your option) any later version.
--
--    This program is distributed in the hope that it will be useful,
--    but WITHOUT ANY WARRANTY; without even the implied warranty of
--    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--    GNU General Public License for more details.
--
--    You should have received a copy of the GNU General Public License
--    along with this program.  If not, see <http://www.gnu.org/licenses/>.

with Interfaces.C; use Interfaces.C;
with Interfaces.C_Streams;
private with Interfaces.C.Pointers;
with Ada.Streams;
with GMP.Constants;

package GMP.Binding is

   pragma Preelaborate;

   Gmp_Version : String renames GMP.Constants.Gmp_Version;
   Mp_Bits_Per_Limb          : constant := GMP.Constants.Mp_Bits_Per_Limb;
   Gnu_Mp_Version            : constant := GMP.Constants.Gnu_Mp_Version;
   Gnu_Mp_Version_Minor      : constant := GMP.Constants.Gnu_Mp_Version_Minor;
   Gnu_Mp_Version_Patchlevel : constant := GMP.Constants.Gnu_Mp_Version_Patchlevel;

   type Mp_Exp_T is range -2**(GMP.Constants.Mp_Exp_T_Size - 1)
     .. 2**(GMP.Constants.Mp_Exp_T_Size - 1) - 1;
   for Mp_Exp_T'Size use GMP.Constants.Mp_Exp_T_Size;

   type Mp_Size_T is range -2**(GMP.Constants.Mp_Size_T_Size - 1)
     .. 2**(GMP.Constants.Mp_Size_T_Size - 1) - 1;
   for Mp_Size_T'Size use GMP.Constants.Mp_Size_T_Size;

   type Mp_Limb_T is mod 2**GMP.Constants.Mp_Limb_T_Size;
   for Mp_Limb_T'Size use GMP.Constants.Mp_Limb_T_Size;

   type Mpz_T is private;
   type Mpq_T is private;
   type Mpf_T is private;
   --  These types should be limited if this interface was ever to be
   --  used directly.

   type Mpz_T_Ptr is access all Mpz_T;

   type Gmp_Randstate_T is private;

   ---------------
   --  Integer  --
   ---------------

   --  Initialization

   procedure Mpz_Init (Integer : out Mpz_T);
   pragma Import (C, Mpz_Init, "mpz_init", "__gmpz_init");
   --  Initialize Integer, with space for n bits, and set its value to 0.

   procedure Mpz_Init2 (Integer :    out Mpz_T;
                        N       : in     unsigned_long);
   pragma Import (C, Mpz_Init2, "mpz_init2", "__gmpz_init2");

   procedure Mpz_Clear (Integer : in out Mpz_T);
   pragma Import (C, Mpz_Clear, "mpz_clear", "__gmpz_clear");
   --  Free the space occupied by integer.
   --  Call this function for all mpz_t variables when you are done with them.

   procedure Mpz_Realloc2 (Integer : in out Mpz_T;
                           N       : in     unsigned_long);
   pragma Import (C, Mpz_Realloc2, "mpz_realloc2", "__gmpz_realloc2");
   --  Change the space allocated for integer to n bits. The value in integer is
   --  preserved if it fits, or is set to 0 if not. This function can be used to
   --  increase the space for a variable in order to avoid repeated automatic
   --  reallocations, or to decrease it to give memory back to the heap.

   --  Assignment

   procedure Mpz_Set (Rop : in out Mpz_T;
                      Op  : in     Mpz_T);
   pragma Import (C, Mpz_Set, "mpz_set", "__gmpz_set");

   procedure Mpz_Set_Ui (Rop : in out Mpz_T;
                         Op  : in     unsigned_long);
   pragma Import (C, Mpz_Set_Ui, "mpz_set_ui", "__gmpz_set_ui");

   procedure Mpz_Set_Si (Rop : in out Mpz_T;
                         Op  : in     long);
   pragma Import (C, Mpz_Set_Si, "mpz_set_si", "__gmpz_set_si");

   procedure Mpz_Set_D (Rop : in out Mpz_T;
                        Op  : in     double);
   pragma Import (C, Mpz_Set_D, "mpz_set_d", "__gmpz_set_d");

   procedure Mpz_Set_Q (Rop : in out Mpz_T;
                        Op  : in     Mpq_T);
   pragma Import (C, Mpz_Set_Q, "mpz_set_q", "__gmpz_set_q");

   procedure Mpz_Set_F (Rop : in out Mpz_T;
                        Op  : in     Mpf_T);
   pragma Import (C, Mpz_Set_F, "mpz_set_f", "__gmpz_set_f");

   procedure Mpz_Set_Str (Result :    out int;
                          Rop    : in out Mpz_T;
                          Str    : in     char_array;
                          Base   : in     int);
   pragma Import (C, Mpz_Set_Str, "mpz_set_str", "__gmpz_set_str");
   pragma Import_Valued_Procedure (Mpz_Set_Str);
   --  set the value of rop from op.
   --  mpz_set_d, mpz_set_q and mpz_set_f truncate op to make it an integer.
   --  int mpz_set_str (mpz t rop, char *str, int base)
   --  Set the value of rop from str, a null-terminated C string in base base.
   --  White space is allowed in the string, and is simply ignored.

   procedure Mpz_Swap (Rop1, Rop2 : in out Mpz_T);
   pragma Import (C, Mpz_Swap, "mpz_swap", "__gmpz_swap");
   --  Swap the values rop1 and rop2 efficiently.

   --  Combined Initialization and Assignment
   --  Warning : Do not call for already initialized variables !

   procedure Mpz_Init_Set (Rop :    out Mpz_T;
                           Op  : in     Mpz_T);
   pragma Import (C, Mpz_Init_Set, "mpz_init_set", "__gmpz_init_set");

   procedure Mpz_Init_Set_Ui (Rop :    out Mpz_T;
                              Op  : in     unsigned_long);
   pragma Import (C, Mpz_Init_Set_Ui, "mpz_init_set_ui", "__gmpz_init_set_ui");

   procedure Mpz_Init_Set_Si (Rop :    out Mpz_T;
                              Op  : in     long);
   pragma Import (C, Mpz_Init_Set_Si, "mpz_init_set_si", "__gmpz_init_set_si");

   procedure Mpz_Init_Set_D (Rop :    out Mpz_T;
                             Op  : in     double);
   pragma Import (C, Mpz_Init_Set_D, "mpz_init_set_d", "__gmpz_init_set_d");
   --  Initialize rop with limb space and set the initial numeric value from op.

   procedure Mpz_Init_Set_Str (Result :    out int;
                               Rop    :    out Mpz_T;
                               Str    : in     char_array;
                               Base   : in     int);
   pragma Import (C, Mpz_Init_Set_Str, "mpz_init_set_str", "__gmpz_init_set_str");
   pragma Import_Valued_Procedure (Mpz_Init_Set_Str);

   --  Initialize rop and set its value like mpz_set_str (see its
   --  documentation for details).  In C, mpz_init_set_str is a
   --  function that returns an int value. But in Ada, it needs to be
   --  a procedure since rop is modified by the call, and the return
   --  value is of little interest : If the string is a correct base
   --  base number, the function returns 0; if an error occurs it
   --  returns 1.  rop is initialized even if an error occurs. (I.e.,
   --  you have to call mpz_clear for it.)

   --  Conversion

   function Mpz_Get_Ui (Op : in Mpz_T)
                       return unsigned_long;
   pragma Import (C, Mpz_Get_Ui, "mpz_get_ui", "__gmpz_get_ui");
   --  Return the value of op as an unsigned long. If op is too big to
   --  fit an unsigned long then just the least significant bits that
   --  do fit are returned. The sign of op is ignored, only the
   --  absolute value is used.

   function Mpz_Get_Si (Op : in Mpz_T)
                       return long;
   pragma Import (C, Mpz_Get_Si, "mpz_get_si", "__gmpz_get_si");
   --  If op fits into a signed long int return the value of
   --  op. Otherwise return the least significant part of op, with the
   --  same sign as op. If op is too big to fit in a signed long int,
   --  the returned result is probably not very useful. To find out if
   --  the value will fit, use the function mpz_fits_slong_p.

   function Mpz_Get_D (Op : in Mpz_T)
                      return double;
   pragma Import (C, Mpz_Get_D, "mpz_get_d", "__gmpz_get_d");
   --  Convert op to a double, truncating if necessary (ie. rounding
   --  towards zero).  If the exponent from the conversion is too big,
   --  the result is system dependent. An infinity is returned where
   --  available. A hardware overflow trap may or may not occur.

   procedure Mpz_Get_D_2exp (Result :    out double;
                             Exp    :    out long;
                             Op     : in     Mpz_T);
   pragma Import (C, Mpz_Get_D_2exp, "mpz_get_d_2exp", "__gmpz_get_d_2exp");
   pragma Import_Valued_Procedure (Mpz_Get_D_2exp);
   --  Convert op to a double, truncating if necessary (ie. rounding
   --  towards zero), and returning the exponent separately.  The
   --  return value is in the range 0.5 <= |d| < 1 and the exponent is
   --  stored to *exp. d*2**exp is the (truncated) op value. If op is
   --  zero, the return is 0.0 and 0 is stored to *exp.  This is
   --  similar to the standard C frexp function.

   procedure Mpz_Get_Str (Str    :    out char_array;
                          Base   : in     int;
                          Op     : in     Mpz_T);
   pragma Import (C, Mpz_Get_Str, "mpz_get_str", "__gmpz_get_str");
   --  Better not use xmalloc, char_array is much cleaner. Ignore the
   --  result.

   --  Convert op to a string of digits in base base. The
   --  base argument may vary from 2 to 62 or from 2 to 36. For base
   --  in the range 2..36, digits and upper-case letters are used; for
   --  37..62, digits, upper-case letters, and lower-case letters (in
   --  that significance order) are used.  If str is NULL, the result
   --  string is allocated using the current allocation function. The
   --  block will be strlen(str)+1 bytes, that being exactly enough
   --  for the string and null-terminator.  If str is not NULL, it
   --  should point to a block of storage large enough for the result,
   --  that being mpz_sizeinbase (op, base) + 2. The two extra bytes
   --  are for a possible minus sign, and the null-terminator.  A
   --  pointer to the result string is returned, being either the
   --  allocated block, or the given str.


   --  Arithmetic

   procedure Mpz_Add (Rop      : in out Mpz_T;
                      Op1, Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Add, "mpz_add", "__gmpz_add");

   procedure Mpz_Add_Ui (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Add_Ui, "mpz_add_ui", "__gmpz_add_ui");
   --  set rop to op1 + op2.

   procedure Mpz_Sub (Rop      : in out Mpz_T;
                      Op1, Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Sub, "mpz_sub", "__gmpz_sub");

   procedure Mpz_Sub_Ui (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Sub_Ui, "mpz_sub_ui", "__gmpz_sub_ui");

   procedure Mpz_Ui_Sub (Rop : in out Mpz_T;
                         Op1 : in     unsigned_long;
                         Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Ui_Sub, "mpz_ui_sub", "__gmpz_ui_sub");
   --  set rop to op1 - op2.

   procedure Mpz_Mul (Rop      : in out Mpz_T;
                      Op1, Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Mul, "mpz_mul", "__gmpz_mul");

   procedure Mpz_Mul_Si (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     long);
   pragma Import (C, Mpz_Mul_Si, "mpz_mul_si", "__gmpz_mul_si");

   procedure Mpz_Mul_Ui (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Mul_Ui, "mpz_mul_ui", "__gmpz_mul_ui");
   --  set rop to op1 * op2.

   procedure Mpz_Addmul (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     Mpz_T);

   pragma Import (C, Mpz_Addmul, "mpz_addmul", "__gmpz_addmul");

   procedure Mpz_Addmul_Ui (Rop : in out Mpz_T;
                            Op1 : in     Mpz_T;
                            Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Addmul_Ui, "mpz_addmul_ui", "__gmpz_addmul_ui");
   --  set rop to rop + op1 * op2.

   procedure Mpz_Submul (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Submul, "mpz_submul", "__gmpz_submul");

   procedure Mpz_Submul_Ui (Rop : in out Mpz_T;
                            Op1 : in     Mpz_T;
                            Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Submul_Ui, "mpz_submul_ui", "__gmpz_submul_ui");
   --  set rop to rop - op1 * op2.

   procedure Mpz_Mul_2exp (Rop : in out Mpz_T;
                           Op1 : in     Mpz_T;
                           Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Mul_2exp, "mpz_mul_2exp", "__gmpz_mul_2exp");
   --  Set rop to op1 × 2op2. This operation can also be defined as a
   --  left shift by op2 bits.

   procedure Mpz_Neg (Rop : in out Mpz_T;
                      Op  : in     Mpz_T);
   pragma Import (C, Mpz_Neg, "mpz_neg", "__gmpz_neg");

   procedure Mpz_Abs (Rop : in out Mpz_T;
                      Op  : in     Mpz_T);
   pragma Import (C, Mpz_Abs, "mpz_abs", "__gmpz_abs");

   --  Division

   procedure Mpz_Cdiv_Q (Q : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Cdiv_Q, "mpz_cdiv_q", "__gmpz_cdiv_q");

   procedure Mpz_Cdiv_R (R : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Cdiv_R, "mpz_cdiv_r", "__gmpz_cdiv_r");

   procedure Mpz_Cdiv_QR (Q : in out Mpz_T;
                          R : in out Mpz_T;
                          N : in     Mpz_T;
                          D : in     Mpz_T);
   pragma Import (C, Mpz_Cdiv_QR, "mpz_cdiv_qr", "__gmpz_cdiv_qr");

   procedure Mpz_Cdiv_Q_Ui (Result :    out unsigned_long;
                            Q      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_Q_Ui, "mpz_cdiv_q_ui", "__gmpz_cdiv_q_ui");
   pragma Import_Valued_Procedure (Mpz_Cdiv_Q_Ui);

   procedure Mpz_Cdiv_R_Ui (Result :    out unsigned_long;
                            R      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_R_Ui, "mpz_cdiv_r_ui", "__gmpz_cdiv_r_ui");
   pragma Import_Valued_Procedure (Mpz_Cdiv_R_Ui);

   procedure Mpz_Cdiv_Qr_Ui (Result :    out unsigned_long;
                             Q      :    out Mpz_T;
                             R      : in out Mpz_T;
                             N      : in     Mpz_T;
                             D      : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_Qr_Ui, "mpz_cdiv_qr_ui", "__gmpz_cdiv_qr_ui");
   pragma Import_Valued_Procedure (Mpz_Cdiv_Qr_Ui);

   procedure Mpz_Cdiv_Ui (Result :    out unsigned_long;
                          N      : in     Mpz_T;
                          D      : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_Ui, "mpz_cdiv_ui", "__gmpz_cdiv_ui");
   pragma Import_Valued_Procedure (Mpz_Cdiv_Ui);

   procedure Mpz_Cdiv_Q_2exp (Q : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_Q_2exp, "mpz_cdiv_q_2exp", "__gmpz_cdiv_q_2exp");

   procedure Mpz_Cdiv_R_2exp (R : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Cdiv_R_2exp, "mpz_cdiv_r_2exp", "__gmpz_cdiv_r_2exp");

   procedure Mpz_Fdiv_Q (Q : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Fdiv_Q, "mpz_fdiv_q", "__gmpz_fdiv_q");

   procedure Mpz_Fdiv_R (R : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Fdiv_R, "mpz_fdiv_r", "__gmpz_fdiv_r");


   procedure Mpz_Fdiv_QR (Q : in out Mpz_T;
                          R : in out Mpz_T;
                          N : in     Mpz_T;
                          D : in     Mpz_T);
   pragma Import (C, Mpz_Fdiv_QR, "mpz_fdiv_qr", "__gmpz_fdiv_qr");

   procedure Mpz_Fdiv_Q_Ui (Result :    out unsigned_long;
                            Q      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_Q_Ui, "mpz_fdiv_q_ui", "__gmpz_fdiv_q_ui");
   pragma Import_Valued_Procedure (Mpz_Fdiv_Q_Ui);

   procedure Mpz_Fdiv_R_Ui (Result :    out unsigned_long;
                            R      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_R_Ui, "mpz_fdiv_r_ui", "__gmpz_fdiv_r_ui");
   pragma Import_Valued_Procedure (Mpz_Fdiv_R_Ui);

   procedure Mpz_Fdiv_Qr_Ui (Result :    out unsigned_long;
                             Q      :    out Mpz_T;
                             R      : in out Mpz_T;
                             N      : in     Mpz_T;
                             D      : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_Qr_Ui, "mpz_fdiv_qr_ui", "__gmpz_fdiv_qr_ui");
   pragma Import_Valued_Procedure (Mpz_Fdiv_Qr_Ui);

   procedure Mpz_Fdiv_Ui (Result :    out unsigned_long;
                          N      : in     Mpz_T;
                          D      : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_Ui, "mpz_fdiv_ui", "__gmpz_fdiv_ui");
   pragma Import_Valued_Procedure (Mpz_Fdiv_Ui);

   procedure Mpz_Fdiv_Q_2exp (Q : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_Q_2exp, "mpz_fdiv_q_2exp", "__gmpz_fdiv_q_2exp");

   procedure Mpz_Fdiv_R_2exp (R : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Fdiv_R_2exp, "mpz_fdiv_r_2exp", "__gmpz_fdiv_r_2exp");

   procedure Mpz_Tdiv_Q (Q : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Tdiv_Q, "mpz_tdiv_q", "__gmpz_tdiv_q");

   procedure Mpz_Tdiv_R (R : in out Mpz_T;
                         N : in     Mpz_T;
                         D : in     Mpz_T);
   pragma Import (C, Mpz_Tdiv_R, "mpz_tdiv_r", "__gmpz_tdiv_r");

   procedure Mpz_Tdiv_QR (Q : in out Mpz_T;
                          R : in out Mpz_T;
                          N : in     Mpz_T;
                          D : in     Mpz_T);
   pragma Import (C, Mpz_Tdiv_QR, "mpz_tdiv_qr", "__gmpz_tdiv_qr");

   procedure Mpz_Tdiv_Q_Ui (Result :    out unsigned_long;
                            Q      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_Q_Ui, "mpz_tdiv_q_ui", "__gmpz_tdiv_q_ui");
   pragma Import_Valued_Procedure (Mpz_Tdiv_Q_Ui);

   procedure Mpz_Tdiv_R_Ui (Result :    out unsigned_long;
                            R      : in out Mpz_T;
                            N      : in     Mpz_T;
                            D      : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_R_Ui, "mpz_tdiv_r_ui", "__gmpz_tdiv_r_ui");
   pragma Import_Valued_Procedure (Mpz_Tdiv_R_Ui);

   procedure Mpz_Tdiv_Qr_Ui (Result :    out unsigned_long;
                             Q      :    out Mpz_T;
                             R      : in out Mpz_T;
                             N      : in     Mpz_T;
                             D      : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_Qr_Ui, "mpz_tdiv_qr_ui", "__gmpz_tdiv_qr_ui");
   pragma Import_Valued_Procedure (Mpz_Tdiv_Qr_Ui);

   procedure Mpz_Tdiv_Ui (Result :    out unsigned_long;
                          N      : in     Mpz_T;
                          D      : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_Ui, "mpz_tdiv_ui", "__gmpz_tdiv_ui");
   pragma Import_Valued_Procedure (Mpz_Tdiv_Ui);

   procedure Mpz_Tdiv_Q_2exp (Q : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_Q_2exp, "mpz_tdiv_q_2exp", "__gmpz_tdiv_q_2exp");

   procedure Mpz_Tdiv_R_2exp (R : in out Mpz_T;
                              N : in     Mpz_T;
                              B : in     unsigned_long);
   pragma Import (C, Mpz_Tdiv_R_2exp, "mpz_tdiv_r_2exp", "__gmpz_tdiv_r_2exp");
   --  Divide n by d, forming a quotient q and/or remainder r.  For the
   --  2exp functions, d = 2b. The rounding is in three styles, each
   --  suiting different applications : "cdiv" : rounds q up towards
   --  +Inf, and r will have the opposite sign to d.  The c stands for
   --  "ceil".  "fdiv" : rounds q down towards -Inf, and r will have
   --  the same sign as d.  The f stands for "floor".  "tdiv" : rounds
   --  q towards zero, and r will have the same sign as n. The t
   --  stands for "truncate".

   --  In all cases q and r will satisfy n = qd + r, and r will satisfy
   --  0 <= |r| < |d|.  Note that for qr the same variable cannot be
   --  passed for both q and r, or results will be unpredictable.  For
   --  the ui variants the return value is the remainder, and in fact
   --  returning the remainder is all the div_ui functions do. For
   --  tdiv and cdiv the remainder can be negative, so for those the
   --  return value is the absolute value of the remainder.  For the
   --  2exp variants the divisor is 2b. These functions are
   --  implemented as right shifts and bit masks, but of course they
   --  round the same as the other functions.  For positive n both
   --  mpz_fdiv_q_2exp and mpz_tdiv_q_2exp are simple bitwise right
   --  shifts.  For negative n, mpz_fdiv_q_2exp is effectively an
   --  arithmetic right shift treating n as twos complement the same
   --  as the bitwise logical functions do, whereas mpz_tdiv_q_2exp
   --  effectively treats n as sign and magnitude.

   procedure Mpz_Mod (R : in out Mpz_T;
                      N : in     Mpz_T;
                      D : in     Mpz_T);
   pragma Import (C, Mpz_Mod, "mpz_mod", "__gmpz_mod");

   procedure Mpz_Mod_Ui (Result :    out unsigned_long;
                         R      : in out Mpz_T;
                         N      : in     Mpz_T;
                         D      : in     Mpz_T);
   pragma Import (C, Mpz_Mod_Ui, "mpz_mod_ui", "__gmpz_mod_ui");
   pragma Import_Valued_Procedure (Mpz_Mod_Ui);
   --  Set r to n mod d. The sign of the divisor is ignored; the
   --  result is always non-negative.  mpz_mod_ui is identical to
   --  mpz_fdiv_r_ui above, returning the remainder as well as setting
   --  r. See mpz_fdiv_ui above if only the return value is wanted.

   procedure Mpz_Divexact (Q    : in out Mpz_T;
                           N, D : in     Mpz_T);
   pragma Import (C, Mpz_Divexact, "mpz_divexact", "__gmpz_divexact");

   procedure Mpz_Divexact_Ui (Q : in out Mpz_T;
                              N : in     Mpz_T;
                              D : in     unsigned_long);
   pragma Import (C, Mpz_Divexact_Ui, "mpz_divexact_ui", "__gmpz_divexact_ui");
   --  Set q to n/d. These functions produce correct results only when
   --  it is known in advance that d divides n.  These routines are
   --  much faster than the other division functions, and are the best
   --  choice when exact division is known to occur, for example
   --  reducing a rational to lowest terms.

   function Mpz_Divisible_P (N : in Mpz_T;
                             D : in Mpz_T)
                            return int;
   pragma Import (C, Mpz_Divisible_P, "mpz_divisible_p", "__gmpz_divisible_p");

   function Mpz_Divisible_Ui_P (N : in Mpz_T;
                                D : in unsigned_long)
                               return int;
   pragma Import (C, Mpz_Divisible_Ui_P, "mpz_divisible_ui_p", "__gmpz_divisible_ui_p");

   function Mpz_Divisible_2exp_P (N : in Mpz_T;
                                  B : in unsigned_long)
                                 return int;
   pragma Import (C, Mpz_Divisible_2exp_P, "mpz_divisible_2exp_p", "__gmpz_divisible_2exp_p");
   --  Return non-zero if n is exactly divisible by d, or in the case
   --  of mpz_divisible_2exp_p by 2b.  n is divisible by d if there
   --  exists an integer q satisfying n = qd. Unlike the other
   --  division functions, d = 0 is accepted and following the rule it
   --  can be seen that only 0 is considered divisible by 0.

   function Mpz_Congruent_P (N : in Mpz_T;
                             C : in Mpz_T;
                             D : in Mpz_T)
                            return int;
   pragma Import (C, Mpz_Congruent_P, "mpz_congruent_p", "__gmpz_congruent_p");

   function Mpz_Congruent_Ui_P (N : in Mpz_T;
                                C : in unsigned_long;
                                D : in unsigned_long)
                               return int;
   pragma Import (C, Mpz_Congruent_Ui_P, "mpz_congruent_ui_p", "__gmpz_congruent_ui_p");

   function Mpz_Congruent_2exp_P (N, C : in Mpz_T;
                                  B    : in unsigned_long)
                                 return int;
   pragma Import (C, Mpz_Congruent_2exp_P, "mpz_congruent_2exp_p", "__gmpz_congruent_2exp_p");
   --  Return non-zero if n is congruent to c modulo d, or in the case
   --  of mpz_congruent_2exp_p modulo 2b.
   --  n is congruent to c mod d if there exists an integer q
   --  satisfying n = c +qd. Unlike the other division functions, d =
   --  0 is accepted and following the rule it can be seen that n and
   --  c are considered congruent mod 0 only when exactly equal.

   --  Exponentiation

   procedure Mpz_Powm (Rop    : in out Mpz_T;
                       Base   : in     Mpz_T;
                       Exp    : in     Mpz_T;
                       Modulo : in     Mpz_T);
   pragma Import (C, Mpz_Powm, "mpz_powm", "__gmpz_powm");

   procedure Mpz_Powm_Ui (Rop    : in out Mpz_T;
                          Base   : in     Mpz_T;
                          Exp    : in     unsigned_long;
                          Modulo : in     Mpz_T);
   pragma Import (C, Mpz_Powm_Ui, "mpz_powm_ui", "__gmpz_powm_ui");
   --  Set rop to baseexp mod modulo. Negative exp is supported if an
   --  inverse base^-1 mod modulo exists (See mpz_invert in section
   --  5.9). If an inverse doesn't exist then a divide by zero is
   --  raised.

   procedure Mpz_Pow_Ui (Rop          : in out Mpz_T;
                         Base         : in     Mpz_T;
                         Exp          : in     unsigned_long);
   pragma Import (C, Mpz_Pow_Ui, "mpz_pow_ui", "__gmpz_pow_ui");

   procedure Mpz_Ui_Pow_Ui (Rop    : in out Mpz_T;
                            Base   : in     unsigned_long;
                            Exp    : in     unsigned_long);
   pragma Import (C, Mpz_Ui_Pow_Ui, "mpz_ui_pow_ui", "__gmpz_ui_pow_ui");
   --  Set rop to base^exp. The case 00 yields 1.

   --  Root Extraction

   procedure Mpz_Root (Result :    out int;
                       Rop    : in out Mpz_T;
                       Op     : in     Mpz_T;
                       N      : in     unsigned_long);
   pragma Import (C, Mpz_Root, "mpz_root", "__gmpz_root");
   pragma Import_Valued_Procedure (Mpz_Root);
   --  Set rop to the truncated integer part of the nth root of op.
   --  Note : in C it is a function that return non-zero if the
   --  computation was exact, i.e., if op is rop to the nth power.

   procedure Mpz_Rootrem (Root      : in out Mpz_T;
                          Remainder : in out Mpz_T;
                          U         : in     Mpz_T;
                          N         : in     unsigned_long);
   pragma Import (C, Mpz_Rootrem, "mpz_rootrem", "__gmpz_rootrem");
   --  Set root to the truncated integer part of the nth root of u.
   --  Set rmndr to the remainder, (u - root**n)

   procedure Mpz_Sqrt (Rop    : in out Mpz_T;
                       Op     : in     Mpz_T);
   pragma Import (C, Mpz_Sqrt, "mpz_sqrt", "__gmpz_sqrt");
   --  Set rop to the truncated integer part of the square root of op.

   procedure Mpz_Sqrtrem (Rop1 : in out Mpz_T;
                          Rop2 : in out Mpz_T;
                          Op   : in     Mpz_T);
   pragma Import (C, Mpz_Sqrtrem, "mpz_sqrtrem", "__gmpz_sqrtrem");
   --  Set sqrt to the truncated integer part of the square root of op,
   --  like mpz_sqrt.  Set rmndr to the remainder (op - sqrt**2),
   --  which will be zero if op is a perfect square.  WARNING : If
   --  sqrt and rmndr are the same variable, the results are
   --  undefined.

   function Mpz_Perfect_Power_P (Op : in Mpz_T)
                                return int;
   pragma Import (C, Mpz_Perfect_Power_P, "mpz_perfect_power_p", "__gmpz_perfect_power_p");
   --  Return non-zero if op is a perfect power, i.e., if there exist
   --  integers a and b, with b > 1, such that op = ab. Under this
   --  definition both 0 and 1 are considered to be perfect
   --  powers. Negative values of op are accepted, but of course can
   --  only be odd perfect powers.

   function Mpz_Perfect_Square_P (Op : in Mpz_T) return int;
   pragma Import (C, Mpz_Perfect_Square_P, "mpz_perfect_square_p", "__gmpz_perfect_square_p");
   --  Return non-zero if op is a perfect square, i.e., if the square
   --  root of op is an integer. Under this definition both 0 and 1
   --  are considered to be perfect squares.

   --  Number Theory

   function Mpz_Probab_Prime_P (N    : in Mpz_T;
                                Reps : in int) return int;
   pragma Import (C, Mpz_Probab_Prime_P, "mpz_probab_prime_p", "__gmpz_probab_prime_p");
   --  Determine whether n is prime. Return 2 if n is definitely prime,
   --  return 1 if n is probably prime (without being certain), or
   --  return 0 if n is definitely composite. This function does some
   --  trial divisions, then some Miller-Rabin probabilistic primality
   --  tests. reps controls how many such tests are done, 5 to 10 is a
   --  reasonable number, more will reduce the chances of a composite
   --  being returned as "probably prime". Miller-Rabin and similar
   --  tests can be more properly called compositeness tests. Numbers
   --  which fail are known to be composite but those which pass might
   --  be prime or might be composite. Only a few composites pass,
   --  hence those which pass are considered probably prime.

   procedure Mpz_Nextprime (Rop : in out Mpz_T;
                            Op  : in Mpz_T);
   pragma Import (C, Mpz_Nextprime, "mpz_nextprime", "__gmpz_nextprime");
   --  Set rop to the next prime greater than op. This function uses a
   --  probabilistic algorithm.  chance of a composite passing will be
   --  extremely small.

   procedure Mpz_Gcd (Rop : in out Mpz_T;
                      Op1 : in     Mpz_T;
                      Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Gcd, "mpz_gcd", "__gmpz_gcd");
   --  Set rop to the greatest common divisor of op1 and op2. The
   --  result is always positive even if one or both input operands
   --  are negative.

   procedure Mpz_Gcd_Ui (Result :    out unsigned_long;
                         Rop    : in out Mpz_T;
                         Op1    : in     Mpz_T;
                         Op2    : in     unsigned_long);
   pragma Import (C, Mpz_Gcd_Ui, "mpz_gcd_ui", "__gmpz_gcd_ui");
   pragma Import_Valued_Procedure (Mpz_Gcd_Ui);
   --  Compute the greatest common divisor of op1 and op2. If rop is
   --  not NULL, store the result there. If the result is small enough
   --  to fit in an unsigned long int, it is returned. If the result
   --  does not fit, 0 is returned, and the result is equal to the
   --  argument op1. Note that the result will always fit if op2 is
   --  non-zero.

   procedure Mpz_Gcdext (G : in out Mpz_T;
                         S : in out Mpz_T;
                         T : in out Mpz_T;
                         A : in     Mpz_T;
                         B : in     Mpz_T);
   procedure Mpz_Gcdext (G : in out Mpz_T;
                         S : in out Mpz_T;
                         T : in     Mpz_T_Ptr := null;
                         A : in     Mpz_T;
                         B : in     Mpz_T);
   --  The second form does not compute T.
   pragma Import (C, Mpz_Gcdext, "mpz_gcdext", "__gmpz_gcdext");
   --  Set g to the greatest common divisor of a and b, and in addition
   --  set s and t to coefficients satisfying as + bt = g. g is always
   --  positive, even if one or both of a and b are negative. The
   --  value of s and t are choosen such that |s| =< |b| and |t| =<
   --  |a|. If t is NULL then that value is not computed.

   procedure Mpz_Lcm (Rop : in out Mpz_T;
                      Op1 : in     Mpz_T;
                      Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Lcm, "mpz_lcm", "__gmpz_lcm");

   procedure Mpz_Lcm_Ui (Rop : in out Mpz_T;
                         Op1 : in     Mpz_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpz_Lcm_Ui, "mpz_lcm_ui", "__gmpz_lcm_ui");
   --  Set rop to the least common multiple of op1 and op2. rop is
   --  always positive, irrespective of the signs of op1 and op2. rop
   --  will be zero if either op1 or op2 is zero.

   procedure Mpz_Invert (Result :    out int;
                         Rop    : in out Mpz_T;
                         Op1    : in     Mpz_T;
                         Op2    : in     Mpz_T);
   pragma Import (C, Mpz_Invert, "mpz_invert", "__gmpz_invert");
   pragma Import_Valued_Procedure (Mpz_Invert);
   --  Compute the inverse of op1 modulo op2 and put the result in
   --  rop. If the inverse exists, the return value is non-zero and
   --  rop will satisfy 0 =< |rop| < |op2|. If the inverse doesn't
   --  exist the return value is zero and rop is undefined.

   function Mpz_Jacobi (A : in Mpz_T;
                        B : in Mpz_T)
                       return int;
   pragma Import (C, Mpz_Jacobi, "mpz_jacobi", "__gmpz_jacobi");
   --  Calculate the Jacobi symbol (a/b). This is defined only for b
   --  odd.

   function Mpz_Legendre (A : in Mpz_T;
                          B : in Mpz_T)
                         return int;
   pragma Import (C, Mpz_Legendre, "mpz_legendre", "__gmpz_legendre");
   --  Calculate the Legendre symbol (a/p). This is defined only for p
   --  an odd positive prime, and for such p it's identical to the
   --  Jacobi symbol.

   function Mpz_Kronecker (A : in Mpz_T;
                           B : in Mpz_T)
                          return int;
   pragma Import (C, Mpz_Kronecker, "mpz_kronecker", "gmp_macro_mpz_kronecker");

   function Mpz_Kronecker_Si (A : in Mpz_T;
                              B : in long)
                             return int;
   pragma Import (C, Mpz_Kronecker_Si, "mpz_kronecker_si", "__gmpz_kronecker_si");

   function Mpz_Kronecker_Ui (A : in Mpz_T;
                              B : in unsigned_long)
                             return int;
   pragma Import (C, Mpz_Kronecker_Ui, "mpz_kronecker_ui", "__gmpz_kronecker_ui");

   function Mpz_Si_Kronecker (A : in long;
                              B : in Mpz_T)
                             return int;
   pragma Import (C, Mpz_Si_Kronecker, "mpz_si_kronecker", "__gmpz_si_kronecker");

   function Mpz_Ui_Kronecker (A : in unsigned_long;
                              B : in Mpz_T)
                             return int;
   pragma Import (C, Mpz_Ui_Kronecker, "mpz_ui_kronecker", "__gmpz_ui_kronecker");
   --  Calculate the Jacobi symbol (a/b), with the Kronecker extension
   --  (a/2) = (2/a) when a odd, or (a/2) = 0 when a even.  When b is
   --  odd the Jacobi symbol and Kronecker symbol are identical, so
   --  mpz_kronecker_ui etc can be used for mixed precision Jacobi
   --  symbols too.  For more information see Henri Cohen section
   --  1.4.2 (see Appendix B), or any number theory textbook.

   procedure Mpz_Remove (Result :    out unsigned_long;
                         Rop    : in out Mpz_T;
                         Op     : in     Mpz_T;
                         F      : in     Mpz_T);
   pragma Import (C, Mpz_Remove, "mpz_remove", "__gmpz_remove");
   pragma Import_Valued_Procedure (Mpz_Remove);
   --  Remove all occurrences of the factor f from op and store the
   --  result in rop.  The return value is how many such occurrences
   --  were removed.

   procedure Mpz_Fac_Ui (Rop : in out Mpz_T;
                         Op  : in     unsigned_long);
   pragma Import (C, Mpz_Fac_Ui, "mpz_fac_ui", "__gmpz_fac_ui");
   --  Set rop to op!, the factorial of op.

   procedure Mpz_Bin_Ui (Rop : in out Mpz_T;
                         N   : in     Mpz_T;
                         K   : in     unsigned_long);
   pragma Import (C, Mpz_Bin_Ui, "mpz_bin_ui", "__gmpz_bin_ui");

   procedure Mpz_Bin_Uiui (Rop : in out Mpz_T;
                           N   : in     unsigned_long;
                           K   : in     unsigned_long);
   pragma Import (C, Mpz_Bin_Uiui, "mpz_bin_uiui", "__gmpz_bin_uiui");
   --  Compute the binomial coefficient (n k) and store the result in
   --  rop.  Negative values of n are supported by mpz_bin_ui.

   procedure Mpz_Fib_Ui (Fn : in out Mpz_T;
                         N  : in     unsigned_long);
   pragma Import (C, Mpz_Fib_Ui, "mpz_fib_ui", "__gmpz_fib_ui");

   procedure Mpz_Fib2_Ui (Fn     : in out Mpz_T;
                          Fnsub1 : in out Mpz_T;
                          N      : in     unsigned_long);
   pragma Import (C, Mpz_Fib2_Ui, "mpz_fib2_ui", "__gmpz_fib2_ui");
   --  mpz_fib_ui sets fn to to F(n), the n'th Fibonacci
   --  number. mpz_fib2_ui sets fn to F(n), and fnsub1 to F(n-1).
   --  These functions are designed for calculating isolated Fibonacci
   --  numbers.  When a sequence of values is wanted it's best to
   --  start with mpz_fib2_ui and iterate the defining F(n+1) = F(n) +
   --  F(n-1) or similar.

   procedure Mpz_Lucnum_Ui (Ln : in out Mpz_T;
                            N  : in     unsigned_long);
   pragma Import (C, Mpz_Lucnum_Ui, "mpz_lucnum_ui", "__gmpz_lucnum_ui");

   procedure Mpz_Lucnum2_Ui (Ln     : in out Mpz_T;
                             Lnsub1 : in out Mpz_T;
                             N      : in     unsigned_long);
   pragma Import (C, Mpz_Lucnum2_Ui, "mpz_lucnum2_ui", "__gmpz_lucnum2_ui");
   --  mpz_lucnum_ui sets ln L(n) the n'th Lucas number. mpz_lucnum2_ui
   --  sets ln to L(n), and lnsub1 to L(n-1).  These functions are
   --  designed for calculating isolated Lucas numbers. When a
   --  sequence of values is wanted it's best to start with
   --  mpz_lucnum2_ui and iterate the defining L(n+1) = L(n) + L(n-1)
   --  or similar.  The Fibonacci numbers and Lucas numbers are
   --  related sequences, so it's never necessary to call both
   --  mpz_fib2_ui and mpz_lucnum2_ui. The formulas for going from
   --  Fibonacci to Lucas can be found in Section 16.7.5 [Lucas
   --  Numbers Algorithm], page 107, the reverse is straightforward
   --  too.

   --  Comparison

   function Mpz_Cmp (Op1 : in Mpz_T;
                     Op2 : in Mpz_T)
                    return int;
   pragma Import (C, Mpz_Cmp, "mpz_cmp", "__gmpz_cmp");

   function Mpz_Cmp_D (Op1 : in Mpz_T;
                       Op2 : in double)
                      return int;
   pragma Import (C, Mpz_Cmp_D, "mpz_cmp_d", "__gmpz_cmp_d");

   function Mpz_Cmp_Si (Op1 : in Mpz_T;
                        Op2 : in long)
                       return int;
   pragma Import (C, Mpz_Cmp_Si, "gmp_macro_mpz_cmp_si");

   function Mpz_Cmp_Ui (Op1 : in Mpz_T;
                        Op2 : in unsigned_long)
                       return int;
   pragma Import (C, Mpz_Cmp_Ui, "gmp_macro_mpz_cmp_ui");
   --  Compare op1 and op2. Return a positive value if op1 > op2 , zero
   --  if op1 = op2 , or a negative value if op1 < op2.

   function Mpz_Cmpabs (Op1 : in Mpz_T;
                        Op2 : in Mpz_T)
                       return int;
   pragma Import (C, Mpz_Cmpabs, "mpz_cmpabs", "__gmpz_cmpabs");

   function Mpz_Cmpabs_D (Op1 : in Mpz_T;
                          Op2 : in double)
                         return int;
   pragma Import (C, Mpz_Cmpabs_D, "mpz_cmpabs_d", "__gmpz_cmpabs_d");

   function Mpz_Cmpabs_Ui (Op1 : in Mpz_T;
                           Op2 : in unsigned_long)
                          return int;
   pragma Import (C, Mpz_Cmpabs_Ui, "mpz_cmpabs_ui", "__gmpz_cmpabs_ui");
   --  Compare the absolute values of op1 and op2. Return a positive
   --  value if |op1| > |op2|, zero if |op1| = |op2|, or a negative
   --  value if |op1| < |op2|.  mpz_cmpabs_d can be called with an
   --  infinity, but results are undefined for a NaN.

   function Mpz_Sgn (Op : in Mpz_T) return int;
   pragma Import (C, Mpz_Sgn, "gmp_macro_mpz_sgn");

   --  Logical and Bit Manipulation Functions

   procedure Mpz_And (Rop : in out Mpz_T;
                      Op1 : in     Mpz_T;
                      Op2 : in     Mpz_T);
   pragma Import (C, Mpz_And, "mpz_and", "__gmpz_and");

   procedure Mpz_Ior (Rop : in out Mpz_T;
                      Op1 : in     Mpz_T;
                      Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Ior, "mpz_ior", "__gmpz_ior");

   procedure Mpz_Xor (Rop : in out Mpz_T;
                      Op1 : in     Mpz_T;
                      Op2 : in     Mpz_T);
   pragma Import (C, Mpz_Xor, "mpz_xor", "__gmpz_xor");


   procedure Mpz_Com (Rop : in out Mpz_T;
                      Op  : in     Mpz_T);
   pragma Import (C, Mpz_Com, "mpz_com", "__gmpz_com");

   function Mpz_Popcount (Op : in Mpz_T)
                         return unsigned_long;
   pragma Import (C, Mpz_Popcount, "mpz_popcount", "__gmpz_popcount");

   function Mpz_Hamdist (Op1 : in Mpz_T;
                         Op2 : in Mpz_T)
                        return unsigned_long;
   pragma Import (C, Mpz_Hamdist, "mpz_hamdist", "__gmpz_hamdist");

   function Mpz_Scan0 (Op           : in Mpz_T;
                       Starting_Bit : in unsigned_long)
                      return unsigned_long;
   pragma Import (C, Mpz_Scan0, "mpz_scan0", "__gmpz_scan0");

   function Mpz_Scan1 (Op           : in Mpz_T;
                       Starting_Bit : in unsigned_long)
                      return unsigned_long;
   pragma Import (C, Mpz_Scan1, "mpz_scan1", "__gmpz_scan1");

   procedure Mpz_Setbit (Rop       : in out Mpz_T;
                         Bit_Index : in     unsigned_long);
   pragma Import (C, Mpz_Setbit, "mpz_setbit", "__gmpz_setbit");

   procedure Mpz_Clrbit (Rop       : in out Mpz_T;
                         Bit_Index : in     unsigned_long);
   pragma Import (C, Mpz_Clrbit, "mpz_clrbit", "__gmpz_clrbit");

   procedure Mpz_Combit (Rop       : in out Mpz_T;
                         Bit_Index : in     unsigned_long);
   pragma Import (C, Mpz_Combit, "mpz_combit", "__gmpz_combit");

   function Mpz_Tstbit (Op        : in Mpz_T;
                        Bit_Index : in unsigned_long)
                       return int;
   pragma Import (C, Mpz_Tstbit, "mpz_tstbit", "__gmpz_tstbit");

   --  Input and Output Functions

   function Mpz_Out_Str (Stream : in Interfaces.C_Streams.FILEs;
                         Base   : in int;
                         Op     : in Mpz_T)
                        return size_t;
   pragma Import (C, Mpz_Out_Str, "mpz_out_str", "__gmpz_out_str");

   procedure Mpz_Inp_Str (Result :    out size_t;
                          Rop    : in out Mpz_T;
                          Stream : in     Interfaces.C_Streams.FILEs;
                          Base   : in     int);
   pragma Import (C, Mpz_Inp_Str, "mpz_inp_str", "__gmpz_inp_str");
   pragma Import_Valued_Procedure (Mpz_Inp_Str);

   function Mpz_Out_Raw (Stream : in Interfaces.C_Streams.FILEs;
                         Op     : in Mpz_T)
                        return size_t;
   pragma Import (C, Mpz_Out_Raw, "mpz_out_raw", "__gmpz_out_raw");

   procedure Mpz_Inp_Raw (Result :    out size_t;
                          Rop    : in out Mpz_T;
                          Stream : in     Interfaces.C_Streams.FILEs);
   pragma Import (C, Mpz_Inp_Raw, "mpz_inp_raw", "__gmpz_inp_raw");
   pragma Import_Valued_Procedure (Mpz_Inp_Raw);

   --  Random Number

   procedure Mpz_Urandomb (Rop   : in out Mpz_T;
                           State : in out Gmp_Randstate_T;
                           N     : in     unsigned_long);
   pragma Import (C, Mpz_Urandomb, "mpz_urandomb", "__gmpz_urandomb");

   procedure Mpz_Urandomm (Rop   : in out Mpz_T;
                           State : in out Gmp_Randstate_T;
                           N     : in     Mpz_T);
   pragma Import (C, Mpz_Urandomm, "mpz_urandomm", "__gmpz_urandomm");

   procedure Mpz_Rrandomb (Rop   : in out Mpz_T;
                           State : in out Gmp_Randstate_T;
                           N     : in     unsigned_long);
   pragma Import (C, Mpz_Rrandomb, "mpz_rrandomb", "__gmpz_rrandomb");

   --  mpz_random and mpz_random2 are obsolete.

   --  Import and Export
   --  are not implemented yet.
   --  pragma Import (C, Mpz_Import, "mpz_import", "__gmpz_import");
   --  pragma Import (C, Mpz_Export, "mpz_export", "__gmpz_export");
   --  procedure Mpz_Import (Rop : in out Mpz_T;
   --                            Count : size_t;
   --                            Order : int;
   --                            Size : int;
   --                            Endian : int;
   --                            Nails : size_t;
   --                            Op : Void);

   --     function Mpz_Export (Rop : in outVoid;
   --                           Countp : size_t;
   --                           Order : int;
   --                           Size : int;
   --                           Endian : int;
   --                           Nails : size_t;
   --                           Op : Mpz_T)
   --                          return Void_*};


   --  Miscellaneous

   function Mpz_Fits_Ulong_P (Op : in Mpz_T)
                             return int;
   pragma Import (C, Mpz_Fits_Ulong_P, "mpz_fits_ulong_p", "__gmpz_fits_ulong_p");

   function Mpz_Fits_Slong_P (Op : in Mpz_T)
                             return int;
   pragma Import (C, Mpz_Fits_Slong_P, "mpz_fits_slong_p", "__gmpz_fits_slong_p");

   function Mpz_Fits_Uint_P (Op : in Mpz_T)
                            return int;
   pragma Import (C, Mpz_Fits_Uint_P, "mpz_fits_uint_p", "__gmpz_fits_uint_p");

   function Mpz_Fits_Sint_P (Op : in Mpz_T)
                            return int;
   pragma Import (C, Mpz_Fits_Sint_P, "mpz_fits_sint_p", "__gmpz_fits_sint_p");

   function Mpz_Fits_Ushort_P (Op : in Mpz_T)
                              return int;
   pragma Import (C, Mpz_Fits_Ushort_P, "mpz_fits_ushort_p", "__gmpz_fits_ushort_p");

   function Mpz_Fits_Sshort_P (Op : in Mpz_T)
                              return int;
   pragma Import (C, Mpz_Fits_Sshort_P, "mpz_fits_sshort_p", "__gmpz_fits_sshort_p");
   --  Return non-zero iff the value of op fits in an unsigned long
   --  int, signed long int, unsigned int, signed int, unsigned short
   --  int, or signed short int, respectively. Otherwise, return zero.

   function Mpz_Odd_P (Op : in Mpz_T)
                      return int;
   pragma Import (C, Mpz_Odd_P, "gmp_macro_mpz_odd_p");

   function Mpz_Even_P (Op : in Mpz_T)
                       return int;
   pragma Import (C, Mpz_Even_P, "gmp_macro_mpz_even_p");
   --  Determine whether op is odd or even, respectively. Return
   --  non-zero if yes, zero if no.

   function Mpz_Sizeinbase (Op   : in Mpz_T;
                            Base : in int)
                           return size_t;
   pragma Import (C, Mpz_Sizeinbase, "mpz_sizeinbase", "__gmpz_sizeinbase");
   --  Return the size of op measured in number of digits in the given
   --  base. base can vary from 2 to 62. The sign of op is ignored,
   --  just the absolute value is used. The result will be either
   --  exact or 1 too big. If base is a power of 2, the result is
   --  always exact. If op is zero the return value is always 1.  This
   --  function can be used to determine the space required when
   --  converting op to a string. The right amount of allocation is
   --  normally two more than the value returned by mpz_sizeinbase,
   --  one extra for a minus sign and one for the null-terminator.  It
   --  will be noted that mpz_sizeinbase(op,2) can be used to locate
   --  the most significant 1 bit in op, counting from 1. (Unlike the
   --  bitwise functions which start from 0, See Section 5.11 LOGICAL
   --  AND BIT MANIPULATION FUNCTIONS).

   function Mpz_Getlimbn (Op : in Mpz_T;
                          N  : in Mp_Size_T)
                         return Mp_Limb_T;
   pragma Import (C, Mpz_Getlimbn, "mpz_getlimbn", "__gmpz_getlimbn");

   function Mpz_Size (Op : in Mpz_T) return size_t;
   pragma Import (C, Mpz_Size, "mpz_size", "__gmpz_size");

   ---------------
   -- Rationals --
   ---------------

   --  All rational arithmetic functions assume operands have a
   --  canonical form, and canonicalize their result. The canonical
   --  from means that the denominator and the numerator have no
   --  common factors, and that the denominator is positive. Zero has
   --  the unique representation 0/1.  Pure assignment functions do
   --  not canonicalize the assigned variable.  It is the
   --  responsibility of the user to canonicalize the assigned
   --  variable before any arithmetic operations are performed on that
   --  variable.

   procedure Mpq_Canonicalize (Op : in out Mpq_T);
   pragma Import (C, Mpq_Canonicalize, "mpq_canonicalize", "__gmpq_canonicalize");
   --  Remove any factors that are common to the numerator and
   --  denominator of op, and make the denominator positive.

   --  Initialization and Assignment

   procedure Mpq_Init (Dest_Rational : out Mpq_T);
   pragma Import (C, Mpq_Init, "mpq_init", "__gmpq_init");

   procedure Mpq_Clear (Rational_Number : in out Mpq_T);
   pragma Import (C, Mpq_Clear, "mpq_clear", "__gmpq_clear");
   --  Initialize dest_rational and set it to 0/1. Each variable should
   --  normally only be initialized once, or at least cleared out
   --  (using the function mpq_clear) between each initialization.
   --  Free the space occupied by rational number. Make sure to call
   --  this function for all mpq_t variables when you are done with
   --  them.

   procedure Mpq_Set (Rop : in out Mpq_T;
                      Op  : in     Mpq_T);
   pragma Import (C, Mpq_Set, "mpq_set", "__gmpq_set");

   procedure Mpq_Set_Z (Rop : in out Mpq_T;
                        Op  : in     Mpz_T);
   pragma Import (C, Mpq_Set_Z, "mpq_set_z", "__gmpq_set_z");
   --  Assign rop from op.

   procedure Mpq_Set_Ui (Rop : in out Mpq_T;
                         Op1 : in     unsigned_long;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpq_Set_Ui, "mpq_set_ui", "__gmpq_set_ui");

   procedure Mpq_Set_Si (Rop : in out Mpq_T;
                         Op1 : in     long;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpq_Set_Si, "mpq_set_si", "__gmpq_set_si");
   --  Set the value of rop to op1/op2. Note that if op1 and op2 have
   --  common factors, rop has to be passed to mpq_canonicalize before
   --  any operations are performed on rop.

   procedure Mpq_Set_Str (Result :    out int;
                          Rop    : in out Mpq_T;
                          Str    : in     char_array;
                          Base   : in     int);
   pragma Import (C, Mpq_Set_Str, "mpq_set_str", "__gmpq_set_str");
   pragma Import_Valued_Procedure (Mpq_Set_Str);
   --  Set rop from a null-terminated string str in the given base. The
   --  string can be an integer like "41" or a fraction like
   --  "41/152". The fraction must be in canonical form or if not then
   --  mpq_canonicalize must be called.  The numerator and optional
   --  denominator are parsed the same as in mpz_set_str The base can
   --  vary from 2 to 62, or if base is 0 then the leading characters
   --  are used: 0x or 0X for hex, 0b or 0B for binary, 0 for octal,
   --  or decimal otherwise.

   procedure Mpq_Swap (Rop1 : in out Mpq_T;
                       Rop2 : in out Mpq_T);
   pragma Import (C, Mpq_Swap, "mpq_swap", "__gmpq_swap");
   --  Swap the values rop1 and rop2 efficiently.

   --  Conversion

   function Mpq_Get_D (Op : in Mpq_T)
                      return double;
   pragma Import (C, Mpq_Get_D, "mpq_get_d", "__gmpq_get_d");
   --  Convert op to a double, truncating if necessary (ie. rounding
   --  towards zero).  If the exponent from the conversion is too big
   --  or too small to fit a double then the result is system
   --  dependent. For too big an infinity is returned when
   --  available. For too small 0.0 is normally returned. Hardware
   --  overflow, underflow and denorm traps may or may not occur.

   procedure Mpq_Set_D (Rop : in out Mpq_T;
                        Op  : in     double);
   pragma Import (C, Mpq_Set_D, "mpq_set_d", "__gmpq_set_d");

   procedure Mpq_Set_F (Rop : in out Mpq_T;
                        Op  : in     Mpf_T);
   pragma Import (C, Mpq_Set_F, "mpq_set_f", "__gmpq_set_f");
   --  Set rop to the value of op. There is no rounding, this
   --  conversion is exact.

   procedure Mpq_Get_Str (Str    :    out char_array;
                          Base   : in     int;
                          Op     : in     Mpq_T);
   pragma Import (C, Mpq_Get_Str, "mpq_get_str", "__gmpq_get_str");
   --  Convert op to a string of digits in base base. The base may vary
   --  from 2 to 36.  The string will be of the form "num/den", or if
   --  the denominator is 1 then just "num". If str is NULL, the
   --  result string is allocated using the current allocation
   --  function. The block will be strlen(str)+1 bytes, that being
   --  exactly enough for the string and null-terminator.  If str is
   --  not NULL, it should point to a block of storage large enough
   --  for the result, that being mpz_sizeinbase (mpq_numref(op),
   --  base) + mpz_sizeinbase (mpq_denref(op), base) + 3 The three
   --  extra bytes are for a possible minus sign, possible slash, and
   --  the null-terminator. A pointer to the result string is
   --  returned, being either the allocated block, or the given str.

   --  Better not use xmalloc, char_array is much cleaner. Ignore the
   --  result.

   --  Arithmetic

   procedure Mpq_Add (Sum     : in out Mpq_T;
                      Addend1 : in     Mpq_T;
                      Addend2 : in     Mpq_T);
   pragma Import (C, Mpq_Add, "mpq_add", "__gmpq_add");
   --  Set sum to addend1 + addend2.

   procedure Mpq_Sub (Difference : in out Mpq_T;
                      Minuend    : in     Mpq_T;
                      Subtrahend : in     Mpq_T);
   pragma Import (C, Mpq_Sub, "mpq_sub", "__gmpq_sub");
   --  Set difference to minuend - subtrahend

   procedure Mpq_Mul (Product      : in out Mpq_T;
                      Multiplier   : in     Mpq_T;
                      Multiplicand : in     Mpq_T);
   pragma Import (C, Mpq_Mul, "mpq_mul", "__gmpq_mul");
   --  Set product to multiplier * multiplicand

   procedure Mpq_Mul_2exp (Rop : in out Mpq_T;
                           Op1 : in     Mpq_T;
                           Op2 : in     unsigned_long);
   pragma Import (C, Mpq_Mul_2exp, "mpq_mul_2exp", "__gmpq_mul_2exp");
   --  Set rop to op1 * 2**op2

   procedure Mpq_Div (Quotient : in out Mpq_T;
                      Dividend : in     Mpq_T;
                      Divisor  : in     Mpq_T);
   pragma Import (C, Mpq_Div, "mpq_div", "__gmpq_div");
   --  Set quotient to dividend / divisor

   procedure Mpq_Div_2exp (Rop : in out Mpq_T;
                           Op1 : in     Mpq_T;
                           Op2 : in     unsigned_long);
   pragma Import (C, Mpq_Div_2exp, "mpq_div_2exp", "__gmpq_div_2exp");
   --  Set rop to op1 / 2**op2

   procedure Mpq_Neg (Negated_Operand : in out Mpq_T;
                      Operand         : in     Mpq_T);
   pragma Import (C, Mpq_Neg, "mpq_neg", "__gmpq_neg");
   --  Set negated operand to -operand.

   procedure Mpq_Abs (Rop : in out Mpq_T;
                      Op  : in     Mpq_T);
   pragma Import (C, Mpq_Abs, "mpq_abs", "__gmpq_abs");
   --  Set rop to the absolute value of op.

   procedure Mpq_Inv (Inverted_Number : in out Mpq_T;
                      Number          : in     Mpq_T);
   pragma Import (C, Mpq_Inv, "mpq_inv", "__gmpq_inv");
   --  Set inverted number to 1/number. If the new denominator is zero,
   --  this routine will divide by zero.

   --  Comparison

   function Mpq_Cmp (Op1 : in Mpq_T;
                     Op2 : in Mpq_T)
                    return int;
   pragma Import (C, Mpq_Cmp, "mpq_cmp", "__gmpq_cmp");
   --  Compare op1 and op2. Return a positive value if op1 > op2, zero
   --  if op1 = op2, and a negative value if op1 < op2. To determine
   --  if two rationals are equal, mpq_equal is faster than mpq_cmp.

   function Mpq_Cmp_Ui (Op1  : in Mpq_T;
                        Num2 : in unsigned_long;
                        Den2 : in unsigned_long)
                       return int;
   pragma Import (C, Mpq_Cmp_Ui, "gmp_macro_mpq_cmp_ui");

   function Mpq_Cmp_Si (Op1  : in Mpq_T;
                        Num2 : in long;
                        Den2 : in unsigned_long)
                       return int;
   pragma Import (C, Mpq_Cmp_Si, "gmp_macro_mpq_cmp_si");

   function Mpq_Sgn (Op : in Mpq_T) return int;
   pragma Import (C, Mpq_Sgn, "gmp_macro_mpq_sgn");

   function Mpq_Equal (Op1 : in Mpq_T;
                       Op2 : in Mpq_T)
                      return int;
   pragma Import (C, Mpq_Equal, "mpq_equal", "__gmpq_equal");
   --  Return non-zero if op1 and op2 are equal, zero if they are
   --  non-equal.  Although mpq_cmp can be used for the same purpose,
   --  this function is much faster.

   --  Applying Integer Functions to Rationals

   --  The set of mpq functions is quite small. In particular, there
   --  are few functions for either input or output. The following
   --  functions give direct access to the numerator and denominator
   --  of an mpq_t.  Note that if an assignment to the numerator
   --  and/or denominator could take an mpq_t out of the canonical
   --  then mpq_canonicalize must be called before any other mpq
   --  functions are applied to that mpq_t.

   function Mpq_Numref (Op : in Mpq_T) return Mpz_T_Ptr;
   pragma Import (C, Mpq_Numref, "gmp_macro_mpq_numref");

   function Mpq_Denref (Op : in Mpq_T) return Mpz_T_Ptr;
   pragma Import (C, Mpq_Denref, "gmp_macro_mpq_denref");

   procedure Mpq_Get_Num (Numerator : in out Mpz_T;
                          Rational  : in     Mpq_T);
   pragma Import (C, Mpq_Get_Num, "mpq_get_num", "__gmpq_get_num");

   procedure Mpq_Get_Den (Denominator : in out Mpz_T;
                          Rational    : in     Mpq_T);
   pragma Import (C, Mpq_Get_Den, "mpq_get_den", "__gmpq_get_den");

   procedure Mpq_Set_Num (Rational  : in out Mpq_T;
                          Numerator : in     Mpz_T);
   pragma Import (C, Mpq_Set_Num, "mpq_set_num", "__gmpq_set_num");

   procedure Mpq_Set_Den (Rational    : in out Mpq_T;
                          Denominator : in     Mpz_T);
   pragma Import (C, Mpq_Set_Den, "mpq_set_den", "__gmpq_set_den");
   --  Get or set the numerator or denominator of a rational.

   --  Input and Output

   --  NOTE : <stdio.h> must have been included before gmp.h during
   --  compilation to allow "gmp.h" to define prototypes for these
   --  functions..  Passing a NULL pointer for a stream argument to
   --  any of these functions will make them read from stdin and write
   --  to stdout, respectively.

   function Mpq_Out_Str (Stream : in Interfaces.C_Streams.FILEs;
                         Base   : in int;
                         Op     : in Mpq_T)
                        return size_t;
   pragma Import (C, Mpq_Out_Str, "mpq_out_str", "__gmpq_out_str");
   --  Output op on stdio stream stream, as a string of digits in base
   --  base.

   procedure Mpq_Inp_Str (Result :    out size_t;
                          Rop    : in out Mpq_T;
                          Stream : in     Interfaces.C_Streams.FILEs;
                          Base   : in     int);
   pragma Import (C, Mpq_Inp_Str, "mpq_inp_str", "__gmpq_inp_str");
   pragma Import_Valued_Procedure (Mpq_Inp_Str);

   --------------------
   -- Floating-point --
   --------------------

   procedure Mpf_Set_Default_Prec (Prec : in unsigned_long);
   pragma Import (C, Mpf_Set_Default_Prec, "mpf_set_default_prec", "__gmpf_set_default_prec");

   function Mpf_Get_Default_Prec return unsigned_long;
   pragma Import (C, Mpf_Get_Default_Prec, "mpf_get_default_prec", "__gmpf_get_default_prec");
   --  Set the default precision to be at least prec bits. All
   --  subsequent calls to mpf_init will use this precision, but
   --  previously initialized variables are unaffected.  Return the
   --  default precision actually used.

   procedure Mpf_Init (X : out Mpf_T);
   pragma Import (C, Mpf_Init, "mpf_init", "__gmpf_init");

   procedure Mpf_Init2 (X    :    out Mpf_T;
                        Prec : in     unsigned_long);
   pragma Import (C, Mpf_Init2, "mpf_init2", "__gmpf_init2");
   --  Initialize x to 0, and set its precision to be at least prec
   --  bits.  Do not call if already Initialized !

   procedure Mpf_Clear (X : in out Mpf_T);
   pragma Import (C, Mpf_Clear, "mpf_clear", "__gmpf_clear");
   --  Free the space occupied by x. Make sure to call this function
   --  for all mpf_t variables when you are done with them.

   function Mpf_Get_Prec (Op : in Mpf_T)
                         return unsigned_long;
   pragma Import (C, Mpf_Get_Prec, "mpf_get_prec", "__gmpf_get_prec");

   procedure Mpf_Set_Prec (Rop   : in out Mpf_T;
                           Prec : in     unsigned_long);
   pragma Import (C, Mpf_Set_Prec, "mpf_set_prec", "__gmpf_set_prec");

   procedure Mpf_Set_Prec_Raw (Rop  : in out Mpf_T;
                               Prec : in     unsigned_long);
   pragma Import (C, Mpf_Set_Prec_Raw, "mpf_set_prec_raw", "__gmpf_set_prec_raw");

   --  Assignment

   procedure Mpf_Set (Rop : in out Mpf_T;
                      Op  : in     Mpf_T);
   pragma Import (C, Mpf_Set, "mpf_set", "__gmpf_set");

   procedure Mpf_Set_Ui (Rop : in out Mpf_T;
                         Op  : in     unsigned_long);
   pragma Import (C, Mpf_Set_Ui, "mpf_set_ui", "__gmpf_set_ui");

   procedure Mpf_Set_Si (Rop : in out Mpf_T;
                         Op  : in     long);
   pragma Import (C, Mpf_Set_Si, "mpf_set_si", "__gmpf_set_si");

   procedure Mpf_Set_D (Rop : in out Mpf_T;
                        Op  : in     double);
   pragma Import (C, Mpf_Set_D, "mpf_set_d", "__gmpf_set_d");

   procedure Mpf_Set_Z (Rop : in out Mpf_T;
                        Op  : in     Mpz_T);
   pragma Import (C, Mpf_Set_Z, "mpf_set_z", "__gmpf_set_z");

   procedure Mpf_Set_Q (Rop : in out Mpf_T;
                        Op  : in     Mpq_T);
   pragma Import (C, Mpf_Set_Q, "mpf_set_q", "__gmpf_set_q");
   --  Set the value of rop from op.

   procedure Mpf_Set_Str (Result :    out int;
                          Rop    : in out Mpf_T;
                          Str    : in     char_array;
                          Base   : in     int);
   pragma Import (C, Mpf_Set_Str, "mpf_set_str", "__gmpf_set_str");
   pragma Import_Valued_Procedure (Mpf_Set_Str);

   procedure Mpf_Swap (Rop1 : in out Mpf_T;
                       Rop2 : in out Mpf_T);
   pragma Import (C, Mpf_Swap, "mpf_swap", "__gmpf_swap");

   --  Combined Initialization and Assignment

   procedure Mpf_Init_Set (Rop  :   out Mpf_T;
                           Op  : in     Mpf_T);
   pragma Import (C, Mpf_Init_Set, "mpf_init_set", "__gmpf_init_set");

   procedure Mpf_Init_Set_Ui (Rop :    out Mpf_T;
                              Op  : in     unsigned_long);
   pragma Import (C, Mpf_Init_Set_Ui, "mpf_init_set_ui", "__gmpf_init_set_ui");

   procedure Mpf_Init_Set_Si (Rop :    out Mpf_T;
                              Op  : in     long);
   pragma Import (C, Mpf_Init_Set_Si, "mpf_init_set_si", "__gmpf_init_set_si");

   procedure Mpf_Init_Set_D (Rop :    out Mpf_T;
                             Op  : in     double);
   pragma Import (C, Mpf_Init_Set_D, "mpf_init_set_d", "__gmpf_init_set_d");
   --  Initialize rop and set its value from op.

   procedure Mpf_Init_Set_Str (Result :    out int;
                               Rop    : in out Mpf_T;
                               Str    : in     char_array;
                               Base   : in     int);
   pragma Import (C, Mpf_Init_Set_Str, "mpf_init_set_str", "__gmpf_init_set_str");
   pragma Import_Valued_Procedure (Mpf_Init_Set_Str);
   --  Initialize rop and set its value from the string in str.  Note
   --  that rop is initialized even if an error occurs. (I.e., you
   --  have to call mpf_clear for it.)  The precision of rop will be
   --  taken from the active default precision, as set by
   --  mpf_set_default_prec.

   --  Conversion

   function Mpf_Get_D (Op : in Mpf_T)
                      return double;
   pragma Import (C, Mpf_Get_D, "mpf_get_d", "__gmpf_get_d");

   procedure Mpf_Get_D_2exp (Ret :    out double;
                             Exp :    out long;
                             Op  : in     Mpf_T);
   pragma Import (C, Mpf_Get_D_2exp, "mpf_get_d_2exp", "__gmpf_get_d_2exp");
   pragma Import_Valued_Procedure (Mpf_Get_D_2exp);

   function Mpf_Get_Si (Op : in Mpf_T)
                       return long;
   pragma Import (C, Mpf_Get_Si, "mpf_get_si", "__gmpf_get_si");

   function Mpf_Get_Ui (Op : in Mpf_T)
                       return unsigned_long;
   pragma Import (C, Mpf_Get_Ui, "mpf_get_ui", "__gmpf_get_ui");

   procedure Mpf_Get_Str (Str      :    out char_array;
                          Expptr   :    out Mp_Exp_T;
                          Base     : in     int;
                          N_Digits : in     size_t;
                          Op       : in     Mpf_T);
   pragma Import (C, Mpf_Get_Str, "mpf_get_str", "__gmpf_get_str");
   --  Convert op to a string of digits in base base. The base argument
   --  may vary from 2 to 62 or from 2 to 36. Up to n_digits digits
   --  will be generated. Trailing zeros are not returned.  No more
   --  digits than can be accurately represented by op are ever
   --  generated. If n_digits is 0 then that accurate maximum number
   --  of digits are generated.

   --  Better not use xmalloc, char_array is much cleaner. Ignore the
   --  result.


   --  Arithmetic

   procedure Mpf_Add (Rop : in out Mpf_T;
                      Op1 : in     Mpf_T;
                      Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Add, "mpf_add", "__gmpf_add");

   procedure Mpf_Add_Ui (Rop : in out Mpf_T;
                         Op1 : in     Mpf_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Add_Ui, "mpf_add_ui", "__gmpf_add_ui");
   --  Set rop to op1 + op2 .

   procedure Mpf_Sub (Rop : in out Mpf_T;
                      Op1 : in     Mpf_T;
                      Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Sub, "mpf_sub", "__gmpf_sub");

   procedure Mpf_Ui_Sub (Rop : in out Mpf_T;
                         Op1 : in     unsigned_long;
                         Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Ui_Sub, "mpf_ui_sub", "__gmpf_ui_sub");

   procedure Mpf_Sub_Ui (Rop : in out Mpf_T;
                         Op1 : in     Mpf_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Sub_Ui, "mpf_sub_ui", "__gmpf_sub_ui");
   --  Set rop to op1 - op2.

   procedure Mpf_Mul (Rop : in out Mpf_T;
                      Op1 : in     Mpf_T;
                      Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Mul, "mpf_mul", "__gmpf_mul");

   procedure Mpf_Mul_Ui (Rop : in out Mpf_T;
                         Op1 : in     Mpf_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Mul_Ui, "mpf_mul_ui", "__gmpf_mul_ui");
   --  Set rop to op1 * op2 .

   --  Division is undefined if the divisor is zero, and passing a zero
   --  divisor to the divide functions will make these functions
   --  intentionally divide by zero. This lets the user handle
   --  arithmetic exceptions in these functions in the same manner as
   --  other arithmetic exceptions.
   procedure Mpf_Div (Rop : in out Mpf_T;
                      Op1 : in     Mpf_T;
                      Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Div, "mpf_div", "__gmpf_div");

   procedure Mpf_Ui_Div (Rop : in out Mpf_T;
                         Op1 : in     unsigned_long;
                         Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Ui_Div, "mpf_ui_div", "__gmpf_ui_div");

   procedure Mpf_Div_Ui (Rop : in out Mpf_T;
                         Op1 : in     Mpf_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Div_Ui, "mpf_div_ui", "__gmpf_div_ui");
   --  Set rop to op1 / op2.

   procedure Mpf_Sqrt (Rop : in out Mpf_T;
                       Op  : in     Mpf_T);
   pragma Import (C, Mpf_Sqrt, "mpf_sqrt", "__gmpf_sqrt");

   procedure Mpf_Sqrt_Ui (Rop : in out Mpf_T;
                          Op  : in     unsigned_long);
   pragma Import (C, Mpf_Sqrt_Ui, "mpf_sqrt_ui", "__gmpf_sqrt_ui");

   procedure Mpf_Pow_Ui (Rop : in out Mpf_T;
                         Op1 : in     Mpf_T;
                         Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Pow_Ui, "mpf_pow_ui", "__gmpf_pow_ui");

   procedure Mpf_Neg (Rop : in out Mpf_T;
                      Op  : in     Mpf_T);
   pragma Import (C, Mpf_Neg, "mpf_neg", "__gmpf_neg");

   procedure Mpf_Abs (Rop : in out Mpf_T;
                      Op  : in     Mpf_T);
   pragma Import (C, Mpf_Abs, "mpf_abs", "__gmpf_abs");

   procedure Mpf_Mul_2exp (Rop  : in out Mpf_T;
                           Op1 : in     Mpf_T;
                           Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Mul_2exp, "mpf_mul_2exp", "__gmpf_mul_2exp");

   procedure Mpf_Div_2exp (Rop  : in out Mpf_T;
                           Op1 : in     Mpf_T;
                           Op2 : in     unsigned_long);
   pragma Import (C, Mpf_Div_2exp, "mpf_div_2exp", "__gmpf_div_2exp");

   --  Comparison

   function Mpf_Cmp (Op1 : in Mpf_T;
                     Op2 : in Mpf_T)
                    return int;
   pragma Import (C, Mpf_Cmp, "mpf_cmp", "__gmpf_cmp");

   function Mpf_Cmp_D (Op1 : in Mpf_T;
                       Op2 : in double)
                      return int;
   pragma Import (C, Mpf_Cmp_D, "mpf_cmp_d", "__gmpf_cmp_d");

   function Mpf_Cmp_Ui (Op1 : in Mpf_T;
                        Op2 : in unsigned_long)
                       return int;
   pragma Import (C, Mpf_Cmp_Ui, "mpf_cmp_ui", "__gmpf_cmp_ui");

   function Mpf_Cmp_Si (Op1 : in Mpf_T;
                        Op2 : in long)
                       return int;
   pragma Import (C, Mpf_Cmp_Si, "mpf_cmp_si", "__gmpf_cmp_si");
   --  Compare op1 and op2. Return a positive value if op1 > op2, zero
   --  if op1 = op2 , and a negative value if op1 < op2 .

   function Mpf_Eq (Op1 : in Mpf_T;
                    Op2 : in Mpf_T;
                    Op3 : in unsigned_long)
                   return int;
   pragma Import (C, Mpf_Eq, "mpf_eq", "__gmpf_eq");

   procedure Mpf_Reldiff (Rop : in out Mpf_T;
                          Op1 : in     Mpf_T;
                          Op2 : in     Mpf_T);
   pragma Import (C, Mpf_Reldiff, "mpf_reldiff", "__gmpf_reldiff");

   function Mpf_Sgn (Op : in Mpf_T) return int;
   pragma Import (C, Mpf_Sgn, "gmp_macro_mpf_sgn");

   --  Input and Output

   function Mpf_Out_Str (Stream   : in Interfaces.C_Streams.FILEs;
                         Base     : in int;
                         N_Digits : in size_t;
                         Op       : in Mpf_T)
                        return size_t;
   pragma Import (C, Mpf_Out_Str, "mpf_out_str", "__gmpf_out_str");

   procedure Mpf_Inp_Str (Result :    out size_t;
                          Rop    : in out Mpf_T;
                          Stream : in     Interfaces.C_Streams.FILEs;
                          Base   : in     int);
   pragma Import (C, Mpf_Inp_Str, "mpf_inp_str", "__gmpf_inp_str");
   pragma Import_Valued_Procedure (Mpf_Inp_Str);

   --  Miscellaneous

   procedure Mpf_Ceil (Rop : in out Mpf_T;
                       Op  : in     Mpf_T);
   pragma Import (C, Mpf_Ceil, "mpf_ceil", "__gmpf_ceil");

   procedure Mpf_Floor (Rop : in out Mpf_T;
                        Op  : in     Mpf_T);
   pragma Import (C, Mpf_Floor, "mpf_floor", "__gmpf_floor");

   procedure Mpf_Trunc (Rop : in out Mpf_T;
                        Op  : in     Mpf_T);
   pragma Import (C, Mpf_Trunc, "mpf_trunc", "__gmpf_trunc");

   function Mpf_Integer_P (Op : in Mpf_T)
                          return int;
   pragma Import (C, Mpf_Integer_P, "mpf_integer_p", "__gmpf_integer_p");

   function Mpf_Fits_Ulong_P (Op : in Mpf_T)
                             return int;
   pragma Import (C, Mpf_Fits_Ulong_P, "mpf_fits_ulong_p", "__gmpf_fits_ulong_p");

   function Mpf_Fits_Slong_P (Op : in Mpf_T)
                             return int;
   pragma Import (C, Mpf_Fits_Slong_P, "mpf_fits_slong_p", "__gmpf_fits_slong_p");

   function Mpf_Fits_Uint_P (Op : in Mpf_T)
                            return int;
   pragma Import (C, Mpf_Fits_Uint_P, "mpf_fits_uint_p", "__gmpf_fits_uint_p");

   function Mpf_Fits_Sint_P (Op : in Mpf_T)
                            return int;
   pragma Import (C, Mpf_Fits_Sint_P, "mpf_fits_sint_p", "__gmpf_fits_sint_p");

   function Mpf_Fits_Ushort_P (Op : in Mpf_T)
                              return int;
   pragma Import (C, Mpf_Fits_Ushort_P, "mpf_fits_ushort_p", "__gmpf_fits_ushort_p");

   function Mpf_Fits_Sshort_P (Op : in Mpf_T)
                              return int;
   pragma Import (C, Mpf_Fits_Sshort_P, "mpf_fits_sshort_p", "__gmpf_fits_sshort_p");

   procedure Mpf_Urandomb (Rop    : in out Mpf_T;
                           State : in out Gmp_Randstate_T;
                           Nbits : in     unsigned_long);
   pragma Import (C, Mpf_Urandomb, "mpf_urandomb", "__gmpf_urandomb");

   procedure Mpf_Random2 (Rop      : in out Mpf_T;
                          Max_Size : in     Mp_Size_T;
                          Exp      : in     Mp_Exp_T);
   pragma Import (C, Mpf_Random2, "mpf_random2", "__gmpf_random2");

   --------------------
   --  Random Number --
   --------------------

   --  Random State Initialization --

   procedure Gmp_Randinit_Default (State : out Gmp_Randstate_T);
   pragma Import (C, Gmp_Randinit_Default, "mp_randinit_default", "__gmp_randinit_default");

   procedure Gmp_Randinit_Mt (State : out Gmp_Randstate_T);
   pragma Import (C, Gmp_Randinit_Mt, "mp_randinit_mt", "__gmp_randinit_mt");

   procedure Gmp_Randinit_Lc_2exp (State :    out Gmp_Randstate_T;
                                   A     : in     Mpz_T;
                                   C     : in     unsigned_long;
                                   M2exp : in     unsigned_long);
   pragma Import (C, Gmp_Randinit_Lc_2exp, "mp_randinit_lc_2exp", "__gmp_randinit_lc_2exp");

   procedure Gmp_Randinit_Lc_2exp_Size (Result :    out int;
                                        State  :    out Gmp_Randstate_T;
                                        Size   : in     unsigned_long);
   pragma Import (C, Gmp_Randinit_Lc_2exp_Size, "mp_randinit_lc_2exp_size", "__gmp_randinit_lc_2exp_size");
   pragma Import_Valued_Procedure (Gmp_Randinit_Lc_2exp_Size);

   procedure Gmp_Randinit_Set (Rop :    out Gmp_Randstate_T;
                               Op  : in     Gmp_Randstate_T);
   pragma Import (C, Gmp_Randinit_Set, "mp_randinit_set", "__gmp_randinit_set");

   --  gmp_rand_init is obsolete.

   procedure Gmp_Randclear (State : in out Gmp_Randstate_T);
   pragma Import (C, Gmp_Randclear, "mp_randclear", "__gmp_randclear");

   --  Random State Seeding

   procedure Gmp_Randseed (State : in out Gmp_Randstate_T;
                           Seed  : in     Mpz_T);
   pragma Import (C, Gmp_Randseed, "mp_randseed", "__gmp_randseed");

   procedure Gmp_Randseed_Ui (State : in out Gmp_Randstate_T;
                              Seed  : in     unsigned_long);
   pragma Import (C, Gmp_Randseed_Ui, "mp_randseed_ui", "__gmp_randseed_ui");

   --  Random State Miscellaneous

   procedure Gmp_Urandomb_Ui (Result :    out unsigned_long;
                              State  : in out Gmp_Randstate_T;
                              N      : in     unsigned_long);
   pragma Import (C, Gmp_Urandomb_Ui, "mp_urandomb_ui", "__gmp_urandomb_ui");

   procedure Gmp_Urandomm_Ui (Result :    out unsigned_long;
                              State  : in out Gmp_Randstate_T;
                              N      : in     unsigned_long);
   pragma Import (C, Gmp_Urandomm_Ui, "mp_urandomm_ui", "__gmp_urandomm_ui");

   ---------------------------------
   --  Formatted Output and Input --
   ---------------------------------
   --  Not implemented yet (and may well never be).
   --     function Gmp_Printf (Fmt : Char)
   --                          return int;

   --     function Gmp_Vprintf (Fmt : Char;
   --                            Ap : Va_List)
   --                           return int;

   --     function Gmp_Fprintf (Fp : FILE;
   --                            Fmt : Char)
   --                           return int;

   --     function Gmp_Vfprintf (Fp : FILE;
   --                             Fmt : Char;
   --                             Ap : Va_List)
   --                            return int;

   --     function Gmp_Sprintf (Buf : Char;
   --                            Fmt : Char)
   --                           return int;

   --     function Gmp_Vsprintf (Buf : Char;
   --                             Fmt : Char;
   --                             Ap : Va_List)
   --                            return int;

   --     function Gmp_Snprintf (Buf : Char;
   --                             Size : size_t;
   --                             Fmt : Char)
   --                            return int;

   --     function Gmp_Vsnprintf (Buf : Char;
   --                              Size : size_t;
   --                              Fmt : Char;
   --                              Ap : Va_List)
   --                             return int;

   --     function Gmp_Asprintf (Pp : Char;
   --                             Fmt : Char)
   --                            return int;

   --     function Gmp_Vasprintf (Pp : Char;
   --                              Fmt : Char;
   --                              Ap : Va_List)
   --                             return int;

   --     function Gmp_Obstack_Printf (Ob : Obstack;
   --                                   Fmt : Char)
   --                                  return int;

   --     function Gmp_Obstack_Vprintf (Ob : Obstack;
   --                                    Fmt : Char;
   --                                    Ap : Va_List)
   --                                   return int;

   --     function Gmp_Scanf (Fmt : Char)
   --                         return int;

   --     function Gmp_Vscanf (Fmt : Char;
   --                           Ap : Va_List)
   --                          return int;

   --     function Gmp_Fscanf (Fp : FILE;
   --                           Fmt : Char)
   --                          return int;

   --     function Gmp_Vfscanf (Fp : FILE;
   --                            Fmt : Char;
   --                            Ap : Va_List)
   --                           return int;

   --     function Gmp_Sscanf (S : Char;
   --                           Fmt : Char)
   --                          return int;

   --     function Gmp_Vsscanf (S : Char;
   --                            Fmt : Char;
   --                            Ap : Va_List)
   --                           return int;
   --     pragma Import (C, Gmp_Printf, "mp_printf", "__gmp_printf");
   --     pragma Import (C, Gmp_Vprintf, "mp_vprintf", "__gmp_vprintf");
   --     pragma Import (C, Gmp_Fprintf, "mp_fprintf", "__gmp_fprintf");
   --     pragma Import (C, Gmp_Vfprintf, "mp_vfprintf", "__gmp_vfprintf");
   --     pragma Import (C, Gmp_Sprintf, "mp_sprintf", "__gmp_sprintf");
   --     pragma Import (C, Gmp_Vsprintf, "mp_vsprintf", "__gmp_vsprintf");
   --     pragma Import (C, Gmp_Snprintf, "mp_snprintf", "__gmp_snprintf");
   --     pragma Import (C, Gmp_Vsnprintf, "mp_vsnprintf", "__gmp_vsnprintf");
   --     pragma Import (C, Gmp_Asprintf, "mp_asprintf", "__gmp_asprintf");
   --     pragma Import (C, Gmp_Vasprintf, "mp_vasprintf", "__gmp_vasprintf");
   --     pragma Import (C, Gmp_Obstack_Printf, "mp_obstack_printf", "__gmp_obstack_printf");
   --     pragma Import (C, Gmp_Obstack_Vprintf, "mp_obstack_vprintf", "__gmp_obstack_vprintf");
   --     pragma Import (C, Gmp_Scanf, "mp_scanf", "__gmp_scanf");
   --     pragma Import (C, Gmp_Vscanf, "mp_vscanf", "__gmp_vscanf");
   --     pragma Import (C, Gmp_Fscanf, "mp_fscanf", "__gmp_fscanf");
   --     pragma Import (C, Gmp_Vfscanf, "mp_vfscanf", "__gmp_vfscanf");
   --     pragma Import (C, Gmp_Sscanf, "mp_sscanf", "__gmp_sscanf");
   --     pragma Import (C, Gmp_Vsscanf, "mp_vsscanf", "__gmp_vsscanf");

   -----------------------
   --  MPFR
   -----------------------

   type Mpfr_T is private;
   type Mp_Prec_T is range GMP.Constants.Mpfr_Prec_Min .. GMP.Constants.Mpfr_Prec_Max;
   for Mp_Prec_T'Size use GMP.Constants.Mp_Prec_T_Size;

   type Mp_Rnd_T is (Gmp_Rndn, Gmp_Rndz, Gmp_Rndu, Gmp_Rndd);
   for Mp_Rnd_T use
     (Gmp_Rndn => GMP.Constants.Gmp_Rndn,
      Gmp_Rndz => GMP.Constants.Gmp_Rndz,
      Gmp_Rndu => GMP.Constants.Gmp_Rndu,
      Gmp_Rndd => GMP.Constants.Gmp_Rndd);
   for Mp_Rnd_T'Size use GMP.Constants.Mp_Rnd_T_Size;

   procedure Mpfr_Init2 (X    :    out Mpfr_T;
                         Prec : in     Mp_Prec_T);
   pragma Import (C, Mpfr_Init2, "mpfr_init2", "mpfr_init2");

   procedure Mpfr_Clear (X : in out Mpfr_T);
   pragma Import (C, Mpfr_Clear, "mpfr_clear", "mpfr_clear");

   procedure Mpfr_Init (X : out Mpfr_T);
   pragma Import (C, Mpfr_Init, "mpfr_init", "mpfr_init");

   procedure Mpfr_Set_Default_Prec (Prec : in Mp_Prec_T);
   pragma Import (C, Mpfr_Set_Default_Prec, "mpfr_set_default_prec", "mpfr_set_default_prec");

   function Mpfr_Get_Default_Prec return Mp_Prec_T;
   pragma Import (C, Mpfr_Get_Default_Prec, "mpfr_get_default_prec", "mpfr_get_default_prec");

   procedure Mpfr_Set_Prec (Rop   : in out Mpfr_T;
                            Prec : in     Mp_Prec_T);
   pragma Import (C, Mpfr_Set_Prec, "mpfr_set_prec", "mpfr_set_prec");

   function Mpfr_Get_Prec (Op : in Mpfr_T)
                          return Mp_Prec_T;
   pragma Import (C, Mpfr_Get_Prec, "mpfr_get_prec", "mpfr_get_prec");

   --  Assignment

   procedure Mpfr_Set (Rop : in out Mpfr_T;
                       Op  : in     Mpfr_T;
                       Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set, "mpfr_set", "mpfr_set");

   procedure Mpfr_Set_Ui (Rop : in out Mpfr_T;
                          Op  : in     unsigned_long;
                          Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_Ui, "mpfr_set_ui", "mpfr_set_ui");

   procedure Mpfr_Set_Si (Rop : in out Mpfr_T;
                          Op  : in     long;
                          Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_Si, "mpfr_set_si", "mpfr_set_si");

   procedure Mpfr_Set_D (Rop : in out Mpfr_T;
                         Op  : in     double;
                         Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_D, "mpfr_set_d", "mpfr_set_d");

   procedure Mpfr_Set_Z (Rop : in out Mpfr_T;
                         Op  : in     Mpz_T;
                         Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_Z, "mpfr_set_z", "mpfr_set_z");

   procedure Mpfr_Set_Q (Rop : in out Mpfr_T;
                         Op  : in     Mpq_T;
                         Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_Q, "mpfr_set_q", "mpfr_set_q");

   procedure Mpfr_Set_F (Rop : in out Mpfr_T;
                         Op  : in     Mpf_T;
                         Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Set_F, "mpfr_set_f", "mpfr_set_f");

   procedure Mpfr_Init_Set (Rop : in out Mpfr_T;
                            Op  : in     Mpfr_T;
                            Rnd : in     Mp_Rnd_T);
   pragma Import (C, Mpfr_Init_Set, "mpfr_init_set", "mpfr_init_set");

private

   type Mp_Limb_T_Array is array (size_t range <>) of aliased Mp_Limb_T;
   package Limbs is new Pointers (size_t, Mp_Limb_T, Mp_Limb_T_Array, 0);

   type Mpz_T is
      record
         Mp_Alloc : int;
         Mp_Size  : int;
         Mp_D     : Limbs.Pointer;
      end record;
   for Mpz_T use
      record
         Mp_Alloc at GMP.Constants.Mpz_Alloc_Start
           range 0 .. GMP.Constants.Mpz_Alloc_Length - 1;
         Mp_Size  at GMP.Constants.Mpz_Size_Start
           range 0 .. GMP.Constants.Mpz_Size_Length - 1;
         Mp_D     at GMP.Constants.Mpz_D_Start
           range 0 .. GMP.Constants.Mpz_D_Length - 1;
      end record;
   for Mpz_T'Size use GMP.Constants.Mpz_Alloc_Length
      + GMP.Constants.Mpz_Size_Length + GMP.Constants.Mpz_D_Length;
   pragma Convention (C, Mpz_T);

   procedure Read (Stream : access Ada.Streams.Root_Stream_Type'Class;
                   Item   :   out  Mpz_T);
   for Mpz_T'Read use Read;
   procedure Write (Stream : access Ada.Streams.Root_Stream_Type'Class;
                    Item   : in     Mpz_T);
   for Mpz_T'Write use Write;

   type Mpq_T is new char_array (1 .. GMP.Constants.Sizeof_Mpq_T);
   type Mpf_T is new char_array (1 .. GMP.Constants.Sizeof_Mpf_T);
   type Gmp_Randstate_t is new char_array (1 .. GMP.Constants.Sizeof_Gmp_Randstate_T);
   type Mpfr_T is new char_array (1 .. GMP.Constants.Sizeof_Mpfr_T);

end GMP.Binding;