/usr/include/geos/operation/union/CascadedPolygonUnion.h is in libgeos-dev 3.2.2-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | /**********************************************************************
* $Id: CascadedPolygonUnion.h 2953 2010-03-26 12:03:45Z mloskot $
*
* GEOS - Geometry Engine Open Source
* http://geos.refractions.net
*
* Copyright (C) 2006 Refractions Research Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: operation/union/CascadedPolygonUnion.java rev 1.10 (JTS-1.10)
*
**********************************************************************/
#ifndef GEOS_OP_UNION_CASCADEDPOLYGONUNION_H
#define GEOS_OP_UNION_CASCADEDPOLYGONUNION_H
#include <geos/export.h>
#include <vector>
#include <algorithm>
// Forward declarations
namespace geos {
namespace geom {
class GeometryFactory;
class Geometry;
class Polygon;
class MultiPolygon;
class Envelope;
}
namespace index {
namespace strtree {
class ItemsList;
}
}
}
namespace geos {
namespace operation { // geos::operation
namespace geounion { // geos::operation::geounion
/**
* \brief Helper class holding Geometries, part of which are held by reference
* others are held exclusively.
*/
class GeometryListHolder : public std::vector<geom::Geometry*>
{
private:
typedef std::vector<geom::Geometry*> base_type;
public:
GeometryListHolder() {}
~GeometryListHolder()
{
std::for_each(ownedItems.begin(), ownedItems.end(),
&GeometryListHolder::deleteItem);
}
// items need to be deleted in the end
void push_back_owned(geom::Geometry* item)
{
this->base_type::push_back(item);
ownedItems.push_back(item);
}
geom::Geometry* getGeometry(std::size_t index)
{
if (index >= this->base_type::size())
return NULL;
return (*this)[index];
}
private:
static void deleteItem(geom::Geometry* item);
private:
std::vector<geom::Geometry*> ownedItems;
};
/**
* \brief
* Provides an efficient method of unioning a collection of
* {@link Polygonal} geometries.
* This algorithm is faster and likely more robust than
* the simple iterated approach of
* repeatedly unioning each polygon to a result geometry.
* <p>
* The <tt>buffer(0)</tt> trick is sometimes faster, but can be less robust and
* can sometimes take an exceptionally long time to complete.
* This is particularly the case where there is a high degree of overlap
* between the polygons. In this case, <tt>buffer(0)</tt> is forced to compute
* with <i>all</i> line segments from the outset,
* whereas cascading can eliminate many segments
* at each stage of processing.
* The best case for buffer(0) is the trivial case
* where there is <i>no</i> overlap between the input geometries.
* However, this case is likely rare in practice.
*/
class GEOS_DLL CascadedPolygonUnion
{
private:
std::vector<geom::Polygon*>* inputPolys;
geom::GeometryFactory const* geomFactory;
/**
* The effectiveness of the index is somewhat sensitive
* to the node capacity.
* Testing indicates that a smaller capacity is better.
* For an STRtree, 4 is probably a good number (since
* this produces 2x2 "squares").
*/
static int const STRTREE_NODE_CAPACITY = 4;
public:
CascadedPolygonUnion();
/**
* Computes the union of
* a collection of {@link Polygonal} {@link Geometry}s.
*
* @param polys a collection of {@link Polygonal} {@link Geometry}s
*/
static geom::Geometry* Union(std::vector<geom::Polygon*>* polys);
/**
* Computes the union of
* a collection of {@link Polygonal} {@link Geometry}s.
*
* @param polys a collection of {@link Polygonal} {@link Geometry}s
*/
static geom::Geometry* Union(const geom::MultiPolygon* polys);
/**
* Creates a new instance to union
* the given collection of {@link Geometry}s.
*
* @param geoms a collection of {@link Polygonal} {@link Geometry}s
*/
CascadedPolygonUnion(std::vector<geom::Polygon*>* polys)
: inputPolys(polys),
geomFactory(NULL)
{}
/**
* Computes the union of the input geometries.
*
* @return the union of the input geometries
* @return null if no input geometries were provided
*/
geom::Geometry* Union();
private:
geom::Geometry* unionTree(index::strtree::ItemsList* geomTree);
/**
* Unions a list of geometries
* by treating the list as a flattened binary tree,
* and performing a cascaded union on the tree.
*/
geom::Geometry* binaryUnion(GeometryListHolder* geoms);
/**
* Unions a section of a list using a recursive binary union on each half
* of the section.
*
* @param geoms
* @param start
* @param end
* @return the union of the list section
*/
geom::Geometry* binaryUnion(GeometryListHolder* geoms, std::size_t start,
std::size_t end);
/**
* Reduces a tree of geometries to a list of geometries
* by recursively unioning the subtrees in the list.
*
* @param geomTree a tree-structured list of geometries
* @return a list of Geometrys
*/
GeometryListHolder* reduceToGeometries(index::strtree::ItemsList* geomTree);
/**
* Computes the union of two geometries,
* either of both of which may be null.
*
* @param g0 a Geometry
* @param g1 a Geometry
* @return the union of the input(s)
* @return null if both inputs are null
*/
geom::Geometry* unionSafe(geom::Geometry* g0, geom::Geometry* g1);
geom::Geometry* unionOptimized(geom::Geometry* g0, geom::Geometry* g1);
/**
* Unions two polygonal geometries.
* The case of MultiPolygons is optimized to union only
* the polygons which lie in the intersection of the two geometry's envelopes.
* Polygons outside this region can simply be combined with the union result,
* which is potentially much faster.
* This case is likely to occur often during cascaded union, and may also
* occur in real world data (such as unioning data for parcels on different street blocks).
*
* @param g0 a polygonal geometry
* @param g1 a polygonal geometry
* @param common the intersection of the envelopes of the inputs
* @return the union of the inputs
*/
geom::Geometry* unionUsingEnvelopeIntersection(geom::Geometry* g0,
geom::Geometry* g1, geom::Envelope const& common);
geom::Geometry* extractByEnvelope(geom::Envelope const& env,
geom::Geometry* geom, std::vector<geom::Geometry*>& disjointGeoms);
/**
* Encapsulates the actual unioning of two polygonal geometries.
*
* @param g0
* @param g1
* @return
*/
static geom::Geometry* unionActual(geom::Geometry* g0, geom::Geometry* g1);
};
} // namespace geos::operation::union
} // namespace geos::operation
} // namespace geos
#endif
/**********************************************************************
* $Log$
*
**********************************************************************/
|