This file is indexed.

/usr/include/geos/operation/union/CascadedPolygonUnion.h is in libgeos-dev 3.2.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/**********************************************************************
 * $Id: CascadedPolygonUnion.h 2953 2010-03-26 12:03:45Z mloskot $
 *
 * GEOS - Geometry Engine Open Source
 * http://geos.refractions.net
 *
 * Copyright (C) 2006 Refractions Research Inc.
 *
 * This is free software; you can redistribute and/or modify it under
 * the terms of the GNU Lesser General Public Licence as published
 * by the Free Software Foundation. 
 * See the COPYING file for more information.
 *
 **********************************************************************
 *
 * Last port: operation/union/CascadedPolygonUnion.java rev 1.10 (JTS-1.10)
 *
 **********************************************************************/

#ifndef GEOS_OP_UNION_CASCADEDPOLYGONUNION_H
#define GEOS_OP_UNION_CASCADEDPOLYGONUNION_H
#include <geos/export.h>

#include <vector>
#include <algorithm>

// Forward declarations
namespace geos {
    namespace geom {
        class GeometryFactory;
        class Geometry;
        class Polygon;
        class MultiPolygon;
        class Envelope;
    }
    namespace index {
        namespace strtree {
            class ItemsList;
        }
    }
}

namespace geos {
namespace operation { // geos::operation
namespace geounion {  // geos::operation::geounion

/**
 * \brief Helper class holding Geometries, part of which are held by reference
 *        others are held exclusively.
 */
class GeometryListHolder : public std::vector<geom::Geometry*>
{
private:
    typedef std::vector<geom::Geometry*> base_type;

public:
    GeometryListHolder() {}
    ~GeometryListHolder()
    {
        std::for_each(ownedItems.begin(), ownedItems.end(), 
            &GeometryListHolder::deleteItem);
    }

    // items need to be deleted in the end
    void push_back_owned(geom::Geometry* item)
    {
        this->base_type::push_back(item);
        ownedItems.push_back(item);
    }

    geom::Geometry* getGeometry(std::size_t index)
    {
      if (index >= this->base_type::size()) 
          return NULL;
      return (*this)[index];
    }

private:
    static void deleteItem(geom::Geometry* item);

private:
    std::vector<geom::Geometry*> ownedItems;
};

/**
 * \brief 
 * Provides an efficient method of unioning a collection of 
 * {@link Polygonal} geometries.
 * This algorithm is faster and likely more robust than
 * the simple iterated approach of 
 * repeatedly unioning each polygon to a result geometry.
 * <p>
 * The <tt>buffer(0)</tt> trick is sometimes faster, but can be less robust and 
 * can sometimes take an exceptionally long time to complete.
 * This is particularly the case where there is a high degree of overlap
 * between the polygons.  In this case, <tt>buffer(0)</tt> is forced to compute
 * with <i>all</i> line segments from the outset, 
 * whereas cascading can eliminate many segments
 * at each stage of processing.
 * The best case for buffer(0) is the trivial case
 * where there is <i>no</i> overlap between the input geometries. 
 * However, this case is likely rare in practice.
 */
class GEOS_DLL CascadedPolygonUnion 
{
private:
    std::vector<geom::Polygon*>* inputPolys;
    geom::GeometryFactory const* geomFactory;

    /**
     * The effectiveness of the index is somewhat sensitive
     * to the node capacity.  
     * Testing indicates that a smaller capacity is better.
     * For an STRtree, 4 is probably a good number (since
     * this produces 2x2 "squares").
     */
    static int const STRTREE_NODE_CAPACITY = 4;

public:
    CascadedPolygonUnion();

    /**
     * Computes the union of
     * a collection of {@link Polygonal} {@link Geometry}s.
     * 
     * @param polys a collection of {@link Polygonal} {@link Geometry}s
     */
    static geom::Geometry* Union(std::vector<geom::Polygon*>* polys);

    /**
     * Computes the union of
     * a collection of {@link Polygonal} {@link Geometry}s.
     * 
     * @param polys a collection of {@link Polygonal} {@link Geometry}s
     */
    static geom::Geometry* Union(const geom::MultiPolygon* polys);

    /**
     * Creates a new instance to union
     * the given collection of {@link Geometry}s.
     * 
     * @param geoms a collection of {@link Polygonal} {@link Geometry}s
     */
    CascadedPolygonUnion(std::vector<geom::Polygon*>* polys)
      : inputPolys(polys),
        geomFactory(NULL)
    {}

    /**
     * Computes the union of the input geometries.
     * 
     * @return the union of the input geometries
     * @return null if no input geometries were provided
     */
    geom::Geometry* Union();

private:
    geom::Geometry* unionTree(index::strtree::ItemsList* geomTree);

    /**
     * Unions a list of geometries 
     * by treating the list as a flattened binary tree,
     * and performing a cascaded union on the tree.
     */
    geom::Geometry* binaryUnion(GeometryListHolder* geoms);

    /**
     * Unions a section of a list using a recursive binary union on each half
     * of the section.
     * 
     * @param geoms
     * @param start
     * @param end
     * @return the union of the list section
     */
    geom::Geometry* binaryUnion(GeometryListHolder* geoms, std::size_t start, 
        std::size_t end);

    /**
     * Reduces a tree of geometries to a list of geometries
     * by recursively unioning the subtrees in the list.
     * 
     * @param geomTree a tree-structured list of geometries
     * @return a list of Geometrys
     */
    GeometryListHolder* reduceToGeometries(index::strtree::ItemsList* geomTree);

    /**
     * Computes the union of two geometries, 
     * either of both of which may be null.
     * 
     * @param g0 a Geometry
     * @param g1 a Geometry
     * @return the union of the input(s)
     * @return null if both inputs are null
     */
    geom::Geometry* unionSafe(geom::Geometry* g0, geom::Geometry* g1);

    geom::Geometry* unionOptimized(geom::Geometry* g0, geom::Geometry* g1);

    /**
     * Unions two polygonal geometries.
     * The case of MultiPolygons is optimized to union only 
     * the polygons which lie in the intersection of the two geometry's envelopes.
     * Polygons outside this region can simply be combined with the union result,
     * which is potentially much faster.
     * This case is likely to occur often during cascaded union, and may also
     * occur in real world data (such as unioning data for parcels on different street blocks).
     * 
     * @param g0 a polygonal geometry
     * @param g1 a polygonal geometry
     * @param common the intersection of the envelopes of the inputs
     * @return the union of the inputs
     */
    geom::Geometry* unionUsingEnvelopeIntersection(geom::Geometry* g0, 
        geom::Geometry* g1, geom::Envelope const& common);

    geom::Geometry* extractByEnvelope(geom::Envelope const& env, 
        geom::Geometry* geom, std::vector<geom::Geometry*>& disjointGeoms);

    /**
     * Encapsulates the actual unioning of two polygonal geometries.
     * 
     * @param g0
     * @param g1
     * @return
     */
    static geom::Geometry* unionActual(geom::Geometry* g0, geom::Geometry* g1);
};

} // namespace geos::operation::union
} // namespace geos::operation
} // namespace geos

#endif

/**********************************************************************
 * $Log$
 *
 **********************************************************************/