This file is indexed.

/usr/include/geos/geom/Geometry.h is in libgeos-dev 3.2.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/**********************************************************************
 * $Id: Geometry.h 2757 2009-12-01 15:39:41Z mloskot $
 *
 * GEOS - Geometry Engine Open Source
 * http://geos.refractions.net
 *
 * Copyright (C) 2009  Sandro Santilli <strk@keybit.net>
 * Copyright (C) 2005 2006 Refractions Research Inc.
 * Copyright (C) 2001-2002 Vivid Solutions Inc.
 *
 * This is free software; you can redistribute and/or modify it under
 * the terms of the GNU Lesser General Public Licence as published
 * by the Free Software Foundation. 
 * See the COPYING file for more information.
 *
 **********************************************************************
 *
 * Last port: geom/Geometry.java rev. 1.112
 *
 **********************************************************************/

#ifndef GEOS_GEOM_GEOMETRY_H
#define GEOS_GEOM_GEOMETRY_H

#include <geos/export.h>
#include <geos/platform.h>
#include <geos/inline.h>
#include <geos/geom/Envelope.h>
#include <geos/geom/Dimension.h> // for Dimension::DimensionType
#include <geos/geom/GeometryComponentFilter.h> // for inheritance

#include <string>
#include <iostream>
#include <vector>
#include <memory>

// Forward declarations
namespace geos {
	namespace geom {
		class Coordinate;
		class CoordinateFilter;
		class CoordinateSequence;
		class CoordinateSequenceFilter;
		class GeometryComponentFilter;
		class GeometryFactory;
		class GeometryFilter;
		class IntersectionMatrix;
		class PrecisionModel;
		class Point;
	}
	namespace io { // geos.io
		class Unload;
	} // namespace geos.io
}

namespace geos {
namespace geom { // geos::geom

/// Geometry types
enum GeometryTypeId {
	/// a point
	GEOS_POINT,
	/// a linestring
	GEOS_LINESTRING,
	/// a linear ring (linestring with 1st point == last point)
	GEOS_LINEARRING,
	/// a polygon
	GEOS_POLYGON,
	/// a collection of points
	GEOS_MULTIPOINT,
	/// a collection of linestrings
	GEOS_MULTILINESTRING,
	/// a collection of polygons
	GEOS_MULTIPOLYGON,
	/// a collection of heterogeneus geometries
	GEOS_GEOMETRYCOLLECTION
};

/**
 * \class Geometry geom.h geos.h
 *
 * \brief Basic implementation of Geometry, constructed and
 * destructed by GeometryFactory.
 *
 *  <code>clone</code> returns a deep copy of the object.
 *  Use GeometryFactory to construct.
 *
 *  <H3>Binary Predicates</H3>
 * Because it is not clear at this time
 * what semantics for spatial
 *  analysis methods involving <code>GeometryCollection</code>s would be useful,
 *  <code>GeometryCollection</code>s are not supported as arguments to binary
 *  predicates (other than <code>convexHull</code>) or the <code>relate</code>
 *  method.
 *
 *  <H3>Set-Theoretic Methods</H3>
 *
 *  The spatial analysis methods will
 *  return the most specific class possible to represent the result. If the
 *  result is homogeneous, a <code>Point</code>, <code>LineString</code>, or
 *  <code>Polygon</code> will be returned if the result contains a single
 *  element; otherwise, a <code>MultiPoint</code>, <code>MultiLineString</code>,
 *  or <code>MultiPolygon</code> will be returned. If the result is
 *  heterogeneous a <code>GeometryCollection</code> will be returned. <P>
 *
 *  Because it is not clear at this time what semantics for set-theoretic
 *  methods involving <code>GeometryCollection</code>s would be useful,
 * <code>GeometryCollections</code>
 *  are not supported as arguments to the set-theoretic methods.
 *
 *  <H4>Representation of Computed Geometries </H4>
 *
 *  The SFS states that the result
 *  of a set-theoretic method is the "point-set" result of the usual
 *  set-theoretic definition of the operation (SFS 3.2.21.1). However, there are
 *  sometimes many ways of representing a point set as a <code>Geometry</code>.
 *  <P>
 *
 *  The SFS does not specify an unambiguous representation of a given point set
 *  returned from a spatial analysis method. One goal of JTS is to make this
 *  specification precise and unambiguous. JTS will use a canonical form for
 *  <code>Geometry</code>s returned from spatial analysis methods. The canonical
 *  form is a <code>Geometry</code> which is simple and noded:
 *  <UL>
 *    <LI> Simple means that the Geometry returned will be simple according to
 *    the JTS definition of <code>isSimple</code>.
 *    <LI> Noded applies only to overlays involving <code>LineString</code>s. It
 *    means that all intersection points on <code>LineString</code>s will be
 *    present as endpoints of <code>LineString</code>s in the result.
 *  </UL>
 *  This definition implies that non-simple geometries which are arguments to
 *  spatial analysis methods must be subjected to a line-dissolve process to
 *  ensure that the results are simple.
 *
 *  <H4> Constructed Points And The Precision Model </H4>
 *
 *  The results computed by the set-theoretic methods may
 *  contain constructed points which are not present in the input Geometry.
 *  These new points arise from intersections between line segments in the
 *  edges of the input Geometry. In the general case it is not
 *  possible to represent constructed points exactly. This is due to the fact
 *  that the coordinates of an intersection point may contain twice as many bits
 *  of precision as the coordinates of the input line segments. In order to
 *  represent these constructed points explicitly, JTS must truncate them to fit
 *  the PrecisionModel. 
 *
 *  Unfortunately, truncating coordinates moves them slightly. Line segments
 *  which would not be coincident in the exact result may become coincident in
 *  the truncated representation. This in turn leads to "topology collapses" --
 *  situations where a computed element has a lower dimension than it would in
 *  the exact result. 
 *
 *  When JTS detects topology collapses during the computation of spatial
 *  analysis methods, it will throw an exception. If possible the exception will
 *  report the location of the collapse. 
 *
 *  equals(Object) and hashCode are not overridden, so that when two
 *  topologically equal Geometries are added to HashMaps and HashSets, they
 *  remain distinct. This behaviour is desired in many cases.
 *
 */
class GEOS_DLL Geometry {

public:

	friend class GeometryFactory;

	friend std::ostream& operator<< (std::ostream& os, const Geometry& geom);

	/// A vector of const Geometry pointers
	typedef std::vector<const Geometry *> ConstVect;

	/// A vector of non-const Geometry pointers
	typedef std::vector<Geometry *> NonConstVect;

	/// An auto_ptr of Geometry
	typedef std::auto_ptr<Geometry> AutoPtr;

	/// Make a deep-copy of this Geometry
	virtual Geometry* clone() const=0;

	/// Destroy Geometry and all components
	virtual ~Geometry();


	/**
	 * \brief
	 * Gets the factory which contains the context in which this
	 * geometry was created.
	 *
	 * @return the factory for this geometry
	 */
	const GeometryFactory* getFactory() const { return factory; }

	/**
	* \brief
	* A simple scheme for applications to add their own custom data to
	* a Geometry.
	* An example use might be to add an object representing a
	* Coordinate Reference System.
	* 
	* Note that user data objects are not present in geometries created
	* by construction methods.
	*
	* @param newUserData an object, the semantics for which are
	* defined by the application using this Geometry
	*/
	void setUserData(void* newUserData) { userData=newUserData; }

	/**
	* \brief
	* Gets the user data object for this geometry, if any.
	*
	* @return the user data object, or <code>null</code> if none set
	*/
	void* getUserData() { return userData; }

	/*
	 * \brief
	 * Returns the ID of the Spatial Reference System used by the
	 * <code>Geometry</code>.
	 *
	 * GEOS supports Spatial Reference System information in the simple way
	 * defined in the SFS. A Spatial Reference System ID (SRID) is present
	 * in each <code>Geometry</code> object. <code>Geometry</code>
	 * provides basic accessor operations for this field, but no others.
	 * The SRID is represented as an integer.
	 *
	 * @return the ID of the coordinate space in which the
	 * <code>Geometry</code> is defined.
	 *
	 */
	virtual int getSRID() const { return SRID; }

	/*
	 * Sets the ID of the Spatial Reference System used by the
	 * <code>Geometry</code>.
	 */
	virtual void setSRID(int newSRID) { SRID=newSRID; }

	/**
	 * \brief
	 * Get the PrecisionModel used to create this Geometry.
	 */
	const PrecisionModel* getPrecisionModel() const;

	/// \brief
	/// Returns a vertex of this Geometry,
	/// or NULL if this is the empty geometry
	///
	virtual const Coordinate* getCoordinate() const=0; //Abstract

	/**
	 * \brief
	 * Returns this Geometry vertices.
	 * Caller takes ownership of the returned object.
	 */
	virtual CoordinateSequence* getCoordinates() const=0; //Abstract

	/// Returns the count of this Geometrys vertices.
	virtual size_t getNumPoints() const=0; //Abstract

	/// Returns false if the Geometry not simple.
	virtual bool isSimple() const; 

	/// Return a string representation of this Geometry type
	virtual std::string getGeometryType() const=0; //Abstract

	/// Return an integer representation of this Geometry type
	virtual GeometryTypeId getGeometryTypeId() const=0; //Abstract

	/// Returns the number of geometries in this collection
	/// (or 1 if this is not a collection)
	virtual size_t getNumGeometries() const { return 1; }

	/// Returns a pointer to the nth Geometry int this collection
	/// (or self if this is not a collection)
	virtual const Geometry* getGeometryN(size_t /*n*/) const { return this; }

	/**
	 * \brief Tests the validity of this <code>Geometry</code>.
	 *
	 * Subclasses provide their own definition of "valid".
	 *
	 * @return <code>true</code> if this <code>Geometry</code> is valid
	 *
	 * @see IsValidOp
	 */
	virtual bool isValid() const;

	/// Returns whether or not the set of points in this Geometry is empty.
	virtual bool isEmpty() const=0; //Abstract

	/// Polygon overrides to check for actual rectangle
	virtual bool isRectangle() const { return false; }

	/// Returns the dimension of this Geometry (0=point, 1=line, 2=surface)
	virtual Dimension::DimensionType getDimension() const=0; //Abstract

	/**
	 * \brief
	 * Returns the boundary, or an empty geometry of appropriate
	 * dimension if this <code>Geometry</code>  is empty.
	 *
	 * (In the case of zero-dimensional geometries, 
	 * an empty GeometryCollection is returned.)
	 * For a discussion of this function, see the OpenGIS Simple
	 * Features Specification. As stated in SFS Section 2.1.13.1,
	 * "the boundary of a Geometry is a set of Geometries of the
	 * next lower dimension."
	 *
	 * @return  the closure of the combinatorial boundary
	 *          of this <code>Geometry</code>.
	 *          Ownershipof the returned object transferred to caller.
	 */
	virtual Geometry* getBoundary() const=0; //Abstract

	/// Returns the dimension of this Geometrys inherent boundary.
	virtual int getBoundaryDimension() const=0; //Abstract

	/// Returns this Geometrys bounding box.
	virtual Geometry* getEnvelope() const;

	/** \brief
	 * Returns the minimum and maximum x and y values in this Geometry,
	 * or a null Envelope if this Geometry is empty.
	 */
	virtual const Envelope* getEnvelopeInternal() const;

	/**
	 * Tests whether this geometry is disjoint from the specified geometry.
	 * 
	 * The <code>disjoint</code> predicate has the following equivalent
	 * definitions:
	 *  - The two geometries have no point in common
	 *  - The DE-9IM Intersection Matrix for the two geometries matches
	 *    <code>[FF*FF****]</code>
	 *  - <code>! g.intersects(this)</code>
	 *    (<code>disjoint</code> is the inverse of <code>intersects</code>)
	 *
	 * @param  g  the Geometry with which to compare this Geometry
	 * @return true if the two <code>Geometry</code>s are disjoint
	 *
	 * @see Geometry::intersects
	 */
	virtual bool disjoint(const Geometry *other) const;

	/** \brief
	 * Returns true if the DE-9IM intersection matrix for the two
	 * Geometrys is FT*******, F**T***** or F***T****.
	 */
	virtual bool touches(const Geometry *other) const;

	/// Returns true if disjoint returns false.
	virtual bool intersects(const Geometry *g) const;

	/**
	 * Tests whether this geometry crosses the specified geometry.
	 * 
	 * The <code>crosses</code> predicate has the following equivalent
	 * definitions:
	 *  - The geometries have some but not all interior points in common.
	 *  - The DE-9IM Intersection Matrix for the two geometries matches
	 *    - <code>[T*T******]</code> (for P/L, P/A, and L/A situations)
	 *    - <code>[T*****T**]</code> (for L/P, A/P, and A/L situations)
	 *    - <code>[0********]</code> (for L/L situations)
	 * For any other combination of dimensions this predicate returns
	 * <code>false</code>.
	 * 
	 * The SFS defined this predicate only for P/L, P/A, L/L, and L/A
	 * situations.
	 * JTS extends the definition to apply to L/P, A/P and A/L situations
	 * as well, in order to make the relation symmetric.
	 *
	 * @param  g  the <code>Geometry</code> with which to compare this
	 *            <code>Geometry</code>
	 *@return  <code>true</code> if the two <code>Geometry</code>s cross.
	 */
	virtual bool crosses(const Geometry *g) const;

	/** \brief
	 * Returns true if the DE-9IM intersection matrix for the two
	 * Geometrys is T*F**F***.
	 */
	virtual bool within(const Geometry *g) const;

	/// Returns true if other.within(this) returns true.
	virtual bool contains(const Geometry *g) const;

	/** \brief
	 * Returns true if the DE-9IM intersection matrix for the two
	 * Geometrys is T*T***T** (for two points or two surfaces)
	 * 1*T***T** (for two curves).
	 */
	virtual bool overlaps(const Geometry *g) const;

	/**
	 * \brief
	 * Returns true if the elements in the DE-9IM intersection matrix
	 * for the two Geometrys match the elements in intersectionPattern.
	 *
	 * IntersectionPattern elements may be: 0 1 2 T ( = 0, 1 or 2)
	 * F ( = -1) * ( = -1, 0, 1 or 2).
	 *
	 * For more information on the DE-9IM, see the OpenGIS Simple
	 * Features Specification.
	 *
	 * @throws util::IllegalArgumentException if either arg is a collection
	 *
	 */
	virtual bool relate(const Geometry *g,
			const std::string& intersectionPattern) const;

	bool relate(const Geometry& g, const std::string& intersectionPattern) const
	{
		return relate(&g, intersectionPattern);
	}

	/// Returns the DE-9IM intersection matrix for the two Geometrys.
	virtual IntersectionMatrix* relate(const Geometry *g) const;
	IntersectionMatrix* relate(const Geometry &g) const {
		return relate(&g);
	}

	/**
	 * \brief
	 * Returns true if the DE-9IM intersection matrix for the two
	 * Geometrys is T*F**FFF*.
	 */
	virtual bool equals(const Geometry *g) const;

	/** \brief
	 * Returns <code>true</code> if this geometry covers the
	 * specified geometry.
	 * 
	 * The <code>covers</code> predicate has the following
	 * equivalent definitions:
	 * 
	 * - Every point of the other geometry is a point of this geometry.
	 * - The DE-9IM Intersection Matrix for the two geometries is
	 *    <code>T*****FF*</code>
	 *    or <code>*T****FF*</code>
	 *    or <code>***T**FF*</code>
	 *    or <code>****T*FF*</code>
	 * - <code>g.coveredBy(this)</code>
	 *   (<code>covers</code> is the inverse of <code>coveredBy</code>)
	 * 
	 * If either geometry is empty, the value of this predicate
	 * is <tt>false</tt>.
	 *
	 * This predicate is similar to {@link #contains},
	 * but is more inclusive (i.e. returns <tt>true</tt> for more cases).
	 * In particular, unlike <code>contains</code> it does not distinguish
	 * between points in the boundary and in the interior of geometries.
	 * For most situations, <code>covers</code> should be used in
	 * preference to <code>contains</code>.
	 * As an added benefit, <code>covers</code> is more amenable to
	 * optimization, and hence should be more performant.
	 *
	 * @param  g 
	 *         the <code>Geometry</code> with which to compare this
	 *         <code>Geometry</code>
	 * 
	 * @return <code>true</code> if this <code>Geometry</code>
	 *                           covers <code>g</code>
	 *
	 * @see Geometry::contains
	 * @see Geometry::coveredBy
	 */
	bool covers(const Geometry* g) const;

	/** \brief
	 * Tests whether this geometry is covered by the
	 * specified geometry.
	 *
	 * The <code>coveredBy</code> predicate has the following
	 * equivalent definitions:
	 *
	 *  - Every point of this geometry is a point of the other geometry.
	 *  - The DE-9IM Intersection Matrix for the two geometries matches
	 *       <code>[T*F**F***]</code>
	 *    or <code>[*TF**F***]</code>
	 *    or <code>[**FT*F***]</code>
	 *    or <code>[**F*TF***]</code>
	 *  - <code>g.covers(this)</code>
	 *    (<code>coveredBy</code> is the converse of <code>covers</code>)
	 * 
	 * If either geometry is empty, the value of this predicate
	 * is <tt>false</tt>.
	 * 
	 * This predicate is similar to {@link #within},
	 * but is more inclusive (i.e. returns <tt>true</tt> for more cases).
	 *
	 * @param  g  the <code>Geometry</code> with which to compare
	 *            this <code>Geometry</code>
	 * @return  <code>true</code> if this <code>Geometry</code>
	 *                            is covered by <code>g</code>
	 *
	 * @see Geometry#within
	 * @see Geometry#covers
	 */
	bool coveredBy(const Geometry* g) const {
	  return g->covers(this);
	}


	/// Returns the Well-known Text representation of this Geometry.
	virtual std::string toString() const;

	virtual std::string toText() const;
	
	/// Returns a buffer region around this Geometry having the given width.
	//
	/// @throws util::TopologyException if a robustness error occurs
	///
	virtual Geometry* buffer(double distance) const;

	/// \brief
	/// Returns a buffer region around this Geometry having the
	/// given width and with a specified number of segments used
	/// to approximate curves.
	//
	/// @throws util::TopologyException if a robustness error occurs
	///
	virtual Geometry* buffer(double distance,int quadrantSegments) const;

	/** \brief
	 * Computes a buffer area around this geometry having the given
	 * width and with a specified accuracy of approximation for circular
	 * arcs, and using a specified end cap style.
	 * 
	 * Buffer area boundaries can contain circular arcs.
	 * To represent these arcs using linear geometry they must be
	 * approximated with line segments.
	 *
	 * The <code>quadrantSegments</code> argument allows controlling the
	 * accuracy of the approximation by specifying the number of line
	 * segments used to represent a quadrant of a circle
	 * 
	 * The end cap style specifies the buffer geometry that will be
	 * created at the ends of linestrings.  The styles provided are:
	 * 
	 * - BufferOp::CAP_ROUND - (default) a semi-circle
	 * - BufferOp::CAP_BUTT  - a straight line perpendicular to the
	 *                         end segment
	 * - BufferOp::CAP_SQUARE - a half-square
	 * 
	 *
	 * @param distance the width of the buffer
	 *                 (may be positive, negative or 0)
	 *
	 * @param quadrantSegments the number of line segments used
	 *                         to represent a quadrant of a circle
	 *
	 * @param endCapStyle the end cap style to use
	 *
	 * @return an area geometry representing the buffer region
	 *
	 * @throws util::TopologyException if a robustness error occurs
	 *
	 * @see BufferOp
	 */
	virtual Geometry* buffer(double distance, int quadrantSegments,
			int endCapStyle) const;

	/// \brief
	/// Returns the smallest convex Polygon that contains
	/// all the points in the Geometry.
	virtual Geometry* convexHull() const;

	/** \brief
	 * Returns a Geometry representing the points shared by
	 * this Geometry and other.
	 *
	 * @throws util::TopologyException if a robustness error occurs
	 * @throws util::IllegalArgumentException if either input is a
	 *         non-empty GeometryCollection
	 *
	 */
	virtual Geometry* intersection(const Geometry *other) const;

	/** \brief
	 * Returns a Geometry representing all the points in this Geometry
	 * and other.
	 *
	 * @throws util::TopologyException if a robustness error occurs
	 * @throws util::IllegalArgumentException if either input is a
	 *         non-empty GeometryCollection
	 *
	 */
	virtual Geometry* Union(const Geometry *other) const;
		// throw(IllegalArgumentException *, TopologyException *);

	/**
	 * \brief
	 * Returns a Geometry representing the points making up this
	 * Geometry that do not make up other.
	 *
	 * @throws util::TopologyException if a robustness error occurs
	 * @throws util::IllegalArgumentException if either input is a
	 *         non-empty GeometryCollection
	 *
	 */
	virtual Geometry* difference(const Geometry *other) const;

	/** \brief
	 * Returns a set combining the points in this Geometry not in other,
	 * and the points in other not in this Geometry.
	 *
	 * @throws util::TopologyException if a robustness error occurs
	 * @throws util::IllegalArgumentException if either input is a
	 *         non-empty GeometryCollection
	 *
	 */
	virtual Geometry* symDifference(const Geometry *other) const;

	/** \brief
	 * Returns true if the two Geometrys are exactly equal,
	 * up to a specified tolerance.
	 */
	virtual bool equalsExact(const Geometry *other, double tolerance=0)
		const=0; //Abstract

	virtual void apply_rw(const CoordinateFilter *filter)=0; //Abstract
	virtual void apply_ro(CoordinateFilter *filter) const=0; //Abstract
	virtual void apply_rw(GeometryFilter *filter);
	virtual void apply_ro(GeometryFilter *filter) const;
	virtual void apply_rw(GeometryComponentFilter *filter);
	virtual void apply_ro(GeometryComponentFilter *filter) const;

	/**
	 *  Performs an operation on the coordinates in this Geometry's
	 *  CoordinateSequences.s
	 *  If the filter reports that a coordinate value has been changed,
	 *  {@link #geometryChanged} will be called automatically.
	 *
	 * @param  filter  the filter to apply
	 */
	virtual void apply_rw(CoordinateSequenceFilter& filter)=0;

	/**
	 *  Performs a read-only operation on the coordinates in this
	 *  Geometry's CoordinateSequences.
	 *
	 * @param  filter  the filter to apply
	 */
	virtual void apply_ro(CoordinateSequenceFilter& filter) const=0;

	/** \brief
	 * Apply a fiter to each component of this geometry.
	 * The filter is expected to provide a .filter(const Geometry*)
	 * method.
	 * 
	 * I intend similar templated methods to replace
	 * all the virtual apply_rw and apply_ro functions...
	 *                --strk(2005-02-06);
	 */
	template <class T>
	void applyComponentFilter(T& f) const
	{
		for(size_t i=0, n=getNumGeometries(); i<n; ++i)
			f.filter(getGeometryN(i));
	}

	/// Converts this Geometry to normal form (or  canonical form).
	virtual void normalize()=0; //Abstract

	virtual int compareTo(const Geometry *geom) const;

	/** \brief
	 * Returns the minimum distance between this Geometry
	 * and the Geometry g
	 */
	virtual double distance(const Geometry *g) const;

	/// Returns the area of this Geometry.
	virtual double getArea() const;

	/// Returns the length of this Geometry.
	virtual double getLength() const;

	/** \brief
	 * Tests whether the distance from this Geometry  to another
	 * is less than or equal to a specified value.
	 */
	virtual bool isWithinDistance(const Geometry *geom,double cDistance);

	/** \brief
	 * Computes the centroid of this <code>Geometry</code>.
	 *
	 * The centroid is equal to the centroid of the set of component
	 * Geometries of highest dimension (since the lower-dimension geometries
	 * contribute zero "weight" to the centroid)
	 *
	 * @return a {@link Point} which is the centroid of this Geometry
	 */
	virtual Point* getCentroid() const;

	/// Computes the centroid of this Geometry as a Coordinate
	//
	/// Returns false if centroid cannot be computed (EMPTY geometry)
	///
	virtual bool getCentroid(Coordinate& ret) const;

	/** \brief
	 * Computes an interior point of this <code>Geometry</code>.
	 *
	 * An interior point is guaranteed to lie in the interior of the Geometry,
	 * if it possible to calculate such a point exactly. Otherwise,
	 * the point may lie on the boundary of the geometry.
	 *
	 * @return a Point which is in the interior of this Geometry, or
	 *         null if the geometry doesn't have an interior (empty)
	 */
	virtual Point* getInteriorPoint() const;

	/*
	 * \brief
	 * Notifies this Geometry that its Coordinates have been changed
	 * by an external party (using a CoordinateFilter, for example).
	 */
	virtual void geometryChanged();

	/**
	 * \brief
	 * Notifies this Geometry that its Coordinates have been changed
	 * by an external party.
	 */
	void geometryChangedAction();

protected:

	/// The bounding box of this Geometry
	mutable std::auto_ptr<Envelope> envelope;
	
	/// Returns true if the array contains any non-empty Geometrys.
	static bool hasNonEmptyElements(const std::vector<Geometry *>* geometries);

	/// Returns true if the CoordinateSequence contains any null elements.
	static bool hasNullElements(const CoordinateSequence* list);

	/// Returns true if the vector contains any null elements.
	static bool hasNullElements(const std::vector<Geometry *>* lrs);

//	static void reversePointOrder(CoordinateSequence* coordinates);
//	static Coordinate& minCoordinate(CoordinateSequence* coordinates);
//	static void scroll(CoordinateSequence* coordinates,Coordinate* firstCoordinate);
//	static int indexOf(Coordinate* coordinate,CoordinateSequence* coordinates);
//
	/** \brief
	 * Returns whether the two Geometrys are equal, from the point
	 * of view of the equalsExact method.
	 */
	virtual bool isEquivalentClass(const Geometry *other) const;

	static void checkNotGeometryCollection(const Geometry *g);
			// throw(IllegalArgumentException *);

	//virtual void checkEqualSRID(Geometry *other);

	//virtual void checkEqualPrecisionModel(Geometry *other);

	virtual Envelope::AutoPtr computeEnvelopeInternal() const=0; //Abstract

	virtual int compareToSameClass(const Geometry *geom) const=0; //Abstract

	int compare(std::vector<Coordinate> a, std::vector<Coordinate> b) const;

	int compare(std::vector<Geometry *> a, std::vector<Geometry *> b) const;

	bool equal(const Coordinate& a, const Coordinate& b,
			double tolerance) const;
	int SRID;

	/// @deprecated
	//Geometry* toInternalGeometry(const Geometry *g) const;

	/// @deprecated
	//Geometry* fromInternalGeometry(const Geometry *g) const;

	/// Polygon overrides to check for actual rectangle
	//virtual bool isRectangle() const { return false; } -- moved to public

	Geometry(const Geometry &geom);

	/** \brief
	 * Construct a geometry with the given GeometryFactory.
	 *
	 * Will keep a reference to the factory, so don't
	 * delete it until al Geometry objects referring to
	 * it are deleted.
	 *
	 * @param factory
	 */
	Geometry(const GeometryFactory *factory);

private:



	int getClassSortIndex() const;

	class GeometryChangedFilter : public GeometryComponentFilter
	{
	public:
		void filter_rw(Geometry* geom)
		{
			geom->geometryChangedAction();
		}
	};

	static GeometryChangedFilter geometryChangedFilter;

	/// The GeometryFactory used to create this Geometry
	//
	/// Externally owned
	///
	const GeometryFactory *factory;

	static const GeometryFactory* INTERNAL_GEOMETRY_FACTORY;

	void* userData;
};

/// \brief
/// Write the Well-known Binary representation of this Geometry
/// as an HEX string to the given output stream
///
std::ostream& operator<< (std::ostream& os, const Geometry& geom);

struct GEOS_DLL GeometryGreaterThen {
	bool operator()(const Geometry *first, const Geometry *second);
};


/// Return current GEOS version
std::string geosversion();

/**
 * \brief
 * Return the version of JTS this GEOS
 * release has been ported from.
 */
std::string jtsport();


} // namespace geos::geom
} // namespace geos

#ifdef GEOS_INLINE
# include <geos/geom/Geometry.inl>
#endif

#endif // ndef GEOS_GEOM_GEOMETRY_H

/**********************************************************************
 * $Log$
 * Revision 1.14  2006/07/08 00:33:55  strk
 *         * configure.in: incremented CAPI minor version, to avoid                        falling behind any future version from the 2.2. branch.
 *         * source/geom/Geometry.cpp, source/geom/GeometryFactory.cpp,
 *         source/geomgraph/EdgeRing.cpp,
 *         source/headers/geos/geom/Geometry.h,
 *         source/headers/geos/geom/GeometryFactory.h,
 *         source/headers/geos/geom/GeometryFactory.inl,
 *         source/headers/geos/geomgraph/EdgeRing.h:
 *         updated doxygen comments (sync with JTS head).
 *         * source/headers/geos/platform.h.in: include <inttypes.h>
 *         rather then <stdint.h>
 *
 * Revision 1.13  2006/06/12 10:10:39  strk
 * Fixed getGeometryN() to take size_t rather then int, changed unsigned int parameters to size_t.
 *
 * Revision 1.12  2006/05/18 08:56:50  strk
 *         * source/geom/Geometry.cpp,
 *         source/headers/geos/geom/Geometry.h: added
 *         covers() and isCoveredBy() predicates.
 *         * tests/unit/Makefile.am,
 *         tests/unit/geom/Geometry/coversTest.cpp:
 *         added test for covers() predicates.
 *
 * Revision 1.11  2006/05/04 15:49:39  strk
 * updated all Geometry::getDimension() methods to return Dimension::DimensionType (closes bug#93)
 *
 * Revision 1.10  2006/04/28 10:55:39  strk
 * Geometry constructors made protected, to ensure all constructions use GeometryFactory,
 * which has been made friend of all Geometry derivates. getNumPoints() changed to return
 * size_t.
 *
 * Revision 1.9  2006/04/11 09:31:47  strk
 * Added Geometry::AutoPtr typedef
 *
 * Revision 1.8  2006/04/10 18:15:09  strk
 * Changed Geometry::envelope member to be of type auto_ptr<Envelope>.
 * Changed computeEnvelopeInternal() signater to return auto_ptr<Envelope>
 *
 * Revision 1.7  2006/04/07 09:54:30  strk
 * Geometry::getNumGeometries() changed to return 'unsigned int'
 * rather then 'int'
 *
 * Revision 1.6  2006/03/31 16:53:53  strk
 * Added comment about possible NULL return from getCoordinate()
 *
 * Revision 1.5  2006/03/24 09:52:41  strk
 * USE_INLINE => GEOS_INLINE
 *
 * Revision 1.4  2006/03/23 15:10:29  strk
 * Dropped by-pointer TopologyException constructor, various small cleanups
 *
 * Revision 1.3  2006/03/23 12:12:01  strk
 * Fixes to allow build with -DGEOS_INLINE
 *
 * Revision 1.2  2006/03/20 12:03:25  strk
 * Added operator<< for Geometry, writing HEXWKB
 *
 * Revision 1.1  2006/03/09 16:46:49  strk
 * geos::geom namespace definition, first pass at headers split
 *
 **********************************************************************/