This file is indexed.

/usr/include/GeographicLib/LocalCartesian.hpp is in libgeographiclib-dev 1.8-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/**
 * \file LocalCartesian.hpp
 * \brief Header for GeographicLib::LocalCartesian class
 *
 * Copyright (c) Charles Karney (2008, 2009, 2010) <charles@karney.com>
 * and licensed under the LGPL.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_LOCALCARTESIAN_HPP)
#define GEOGRAPHICLIB_LOCALCARTESIAN_HPP "$Id: LocalCartesian.hpp 6952 2011-02-14 20:26:44Z karney $"

#include "GeographicLib/Geocentric.hpp"
#include "GeographicLib/Constants.hpp"

namespace GeographicLib {

  /**
   * \brief Local Cartesian coordinates
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to local cartesian coordinates (\e x, \e y, \e z).  The origin of local
   * cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
   * = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
   * due north.  The plane \e z = - \e h0 is tangent to the ellipsoid.
   *
   * The conversions all take place via geocentric coordinates using a
   * Geocentric object (by default Geocentric::WGS84).
   **********************************************************************/

  class LocalCartesian {
  private:
    typedef Math::real real;
    static const size_t dim = 3, dim2 = dim * dim;
    const Geocentric _earth;
    real _lat0, _lon0, _h0;
    real _x0, _y0, _z0, _r[dim2];
    void IntForward(real lat, real lon, real h, real& x, real& y, real& z,
                    real M[dim2]) const throw();
    void IntReverse(real x, real y, real z, real& lat, real& lon, real& h,
                    real M[dim2]) const throw();
    void MatrixMultiply(real M[dim2]) const throw();
  public:

    /**
     * Constructor setting the origin.
     *
     * @param[in] lat0 latitude at origin (degrees).
     * @param[in] lon0 longitude at origin (degrees).
     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
     * @param[in] earth Geocentric object for the transformation; default
     *   Geocentric::WGS84.
     **********************************************************************/
    LocalCartesian(real lat0, real lon0, real h0 = 0,
                   const Geocentric& earth = Geocentric::WGS84) throw()
      : _earth(earth)
    { Reset(lat0, lon0, h0); }

    /**
     * Default constructor.
     *
     * @param[in] earth Geocentric object for the transformation; default
     *   Geocentric::WGS84.
     *
     * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
     **********************************************************************/
    explicit LocalCartesian(const Geocentric& earth = Geocentric::WGS84)
      throw()
      : _earth(earth)
    { Reset(real(0), real(0), real(0)); }

    /**
     * Reset the origin.
     *
     * @param[in] lat0 latitude at origin (degrees).
     * @param[in] lon0 longitude at origin (degrees).
     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
     **********************************************************************/
    void Reset(real lat0, real lon0, real h0 = 0)
      throw();

    /**
     * Convert from geodetic to local cartesian coordinates.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] x local cartesian coordinate (meters).
     * @param[out] y local cartesian coordinate (meters).
     * @param[out] z local cartesian coordinate (meters).
     *
     * \e lat should be in the range [-90, 90]; \e lon and \e lon0 should be in
     * the range [-180, 360].
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& x, real& y, real& z)
      const throw() {
      IntForward(lat, lon, h, x, y, z, NULL);
    }

    /**
     * Convert from geodetic to local cartesian coordinates and return rotation
     * matrix.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] x local cartesian coordinate (meters).
     * @param[out] y local cartesian coordinate (meters).
     * @param[out] z local cartesian coordinate (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * Pre-multiplying a unit vector in local cartesian coordinates at (lat,
     * lon, h) by \e M transforms the vector to local cartesian coordinates at
     * (lat0, lon0, h0).
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& x, real& y, real& z,
                 std::vector<real>& M)
      const throw()  {
      real t[dim2];
      IntForward(lat, lon, h, x, y, z, t);
      if (M.end() == M.begin() + dim2)
        copy(t, t + dim2, M.begin());
    }

    /**
     * Convert from local cartesian to geodetic coordinates.
     *
     * @param[in] x local cartesian coordinate (meters).
     * @param[in] y local cartesian coordinate (meters).
     * @param[in] z local cartesian coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     *
     * The value of \e lon returned is in the range [-180, 180).
     **********************************************************************/
    void Reverse(real x, real y, real z, real& lat, real& lon, real& h)
      const throw() {
      IntReverse(x, y, z, lat, lon, h, NULL);
    }

    /**
     * Convert from local cartesian to geodetic coordinates and return rotation
     * matrix.
     *
     * @param[in] x local cartesian coordinate (meters).
     * @param[in] y local cartesian coordinate (meters).
     * @param[in] z local cartesian coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * Pre-multiplying a unit vector in local cartesian coordinates at (lat0,
     * lon0, h0) by the transpose of \e M transforms the vector to local
     * cartesian coordinates at (lat, lon, h).
     **********************************************************************/
    void Reverse(real x, real y, real z, real& lat, real& lon, real& h,
                 std::vector<real>& M)
      const throw() {
      real t[dim2];
      IntReverse(x, y, z, lat, lon, h, t);
      if (M.end() == M.begin() + dim2)
        copy(t, t + dim2, M.begin());
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return latitude of the origin (degrees).
     **********************************************************************/
    Math::real LatitudeOrigin() const throw() { return _lat0; }

    /**
     * @return longitude of the origin (degrees).
     **********************************************************************/
    Math::real LongitudeOrigin() const throw() { return _lon0; }

    /**
     * @return height of the origin (meters).
     **********************************************************************/
    Math::real HeightOrigin() const throw() { return _h0; }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value of \e a inherited from the Geocentric object used in the
     *   constructor.
     **********************************************************************/
    Math::real MajorRadius() const throw() { return _earth.MajorRadius(); }

    /**
     * @return \e r the inverse flattening of the ellipsoid.  This is the
     *   value of \e r inherited from the Geocentric object used in the
     *   constructor.  A value of 0 is returned for a sphere (infinite inverse
     *   flattening).
     **********************************************************************/
    Math::real InverseFlattening() const throw()
    { return _earth.InverseFlattening(); }
    ///@}
  };

} // namespace GeographicLib

#endif