This file is indexed.

/usr/include/GeographicLib/Constants.hpp is in libgeographiclib-dev 1.8-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/**
 * \file Constants.hpp
 * \brief Header for GeographicLib::Constants class
 *
 * Copyright (c) Charles Karney (2008, 2009, 2010, 2011) <charles@karney.com>
 * and licensed under the LGPL.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_CONSTANTS_HPP)
#define GEOGRAPHICLIB_CONSTANTS_HPP "$Id: Constants.hpp 6967 2011-02-19 15:53:41Z karney $"

/**
 * Are C++0X math functions available?
 **********************************************************************/
#if !defined(GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
#if defined(__GXX_EXPERIMENTAL_CXX0X__)
#define GEOGRAPHICLIB_CPLUSPLUS0X_MATH 1
#else
#define GEOGRAPHICLIB_CPLUSPLUS0X_MATH 0
#endif
#endif

/**
 * A compile-time assert.  Use C++0X static_assert, if available.
 **********************************************************************/
#if !defined(STATIC_ASSERT)
#if defined(__GXX_EXPERIMENTAL_CXX0X__)
#define STATIC_ASSERT static_assert
#elif defined(_MSC_VER) && _MSC_VER >= 1600
#define STATIC_ASSERT static_assert
#else
#define STATIC_ASSERT(cond,reason) { enum{ STATIC_ASSERT_ENUM=1/int(cond) }; }
#endif
#endif

#if defined(__GNUC__)
// Suppress "defined but not used" warnings
#define RCSID_DECL(x) namespace \
{ char VAR_ ## x [] __attribute__((used)) = x; }
#else
/**
 * Insertion of RCS Id strings into the object file.
 **********************************************************************/
#define RCSID_DECL(x) namespace { char VAR_ ## x [] = x; }
#endif

RCSID_DECL(GEOGRAPHICLIB_CONSTANTS_HPP)

#if !defined(GEOGRAPHICLIB_PREC)
/**
 * The precision of floating point numbers used in %GeographicLib.  0 means
 * float; 1 (default) means double; 2 means long double.  Nearly all the
 * testing has been carried out with doubles and that's the recommended
 * configuration.  Note that with Microsoft Visual Studio, long double is the
 * same as double.
 **********************************************************************/
#define GEOGRAPHICLIB_PREC 1
#endif

#if defined(__CYGWIN__) && defined(__GNUC__) && __GNUC__ < 4
// g++ 3.x under cygwin doesn't have long double
#define __NO_LONG_DOUBLE_MATH 1
#endif

#include <cmath>
#include <limits>
#include <algorithm>
#include <stdexcept>

/**
 * \brief Namespace for %GeographicLib
 *
 * All of %GeographicLib is defined within the GeographicLib namespace.  In
 * addtion all the header files are included via %GeographicLib/filename.  This
 * minimizes the likelihood of conflicts with other packages.
 **********************************************************************/
namespace GeographicLib {

  /**
   * \brief Mathematical functions needed by %GeographicLib
   *
   * Define mathematical functions in order to localize system dependencies and
   * to provide generic versions of the functions.  In addition define a real
   * type to be used by %GeographicLib.
   **********************************************************************/
  class Math {
  private:
    void dummy() {
      STATIC_ASSERT((GEOGRAPHICLIB_PREC) >= 0 && (GEOGRAPHICLIB_PREC) <= 2,
                    "Bad value of precision");
    }
    Math();                     // Disable constructor
  public:

#if !defined(__NO_LONG_DOUBLE_MATH)
    /**
     * The extended precision type for real numbers, used for some testing.
     * This is long double on computers with this type; otherwise it is double.
     **********************************************************************/
    typedef long double extended;
#else
    typedef double extended;
#endif

#if GEOGRAPHICLIB_PREC == 1
    /**
     * The real type for %GeographicLib. Nearly all the testing has been done
     * with \e real = double.  However, the algorithms should also work with
     * float and long double (where available).
     **********************************************************************/
    typedef double real;
#elif GEOGRAPHICLIB_PREC == 0
    typedef float real;
#elif GEOGRAPHICLIB_PREC == 2
    typedef extended real;
#else
    typedef double real;
#endif

    /**
     * @return \e pi
     **********************************************************************/
    template<typename T>
    static inline T pi() throw()
    // good for about 168-bit accuracy
    { return T(3.1415926535897932384626433832795028841971693993751L); }
    /**
     * A synonym for pi<real>().
     **********************************************************************/
    static inline real pi() throw() { return pi<real>(); }
    /**
     * <b>DEPRECATED</b> A synonym for pi<extened>().
     **********************************************************************/
    static inline extended epi() throw() { return pi<extended>(); }

    /**
     * @return the number of radians in a degree.
     **********************************************************************/
    template<typename T>
    static inline T degree() throw() { return pi<T>() / T(180); }
    /**
     * A synonym for degree<real>().
     **********************************************************************/
    static inline real degree() throw() { return degree<real>(); }
    /**
     * <b>DEPRECATED</b> A synonym for degree<extened>().
     **********************************************************************/
    static inline extended edegree() throw() { return degree<extended>(); }

#if defined(DOXYGEN)
    /**
     * The hypotenuse function avoiding underflow and overflow.
     *
     * @param[in] x
     * @param[in] y
     * @return sqrt(\e x<sup>2</sup> + \e y<sup>2</sup>).
     **********************************************************************/
    template<typename T>
    static inline T hypot(T x, T y) throw() {
      x = std::abs(x);
      y = std::abs(y);
      T a = std::max(x, y),
        b = std::min(x, y) / a;
      return a * std::sqrt(1 + b * b);
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T hypot(T x, T y) throw() { return std::hypot(x, y); }
#elif defined(_MSC_VER)
    static inline double hypot(double x, double y) throw()
    { return _hypot(x, y); }
    static inline float hypot(float x, float y) throw()
    { return _hypotf(x, y); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double hypot(long double x, long double y) throw()
    { return _hypot(x, y); }
#endif
#else
    // Use overloading to define generic versions
    static inline double hypot(double x, double y) throw()
    { return ::hypot(x, y); }
    static inline float hypot(float x, float y) throw()
    { return ::hypotf(x, y); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double hypot(long double x, long double y) throw()
    { return ::hypotl(x, y); }
#endif
#endif

#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
    /**
     * exp(\e x) - 1 accurate near \e x = 0.  This is taken from
     * N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
     * Edition (SIAM, 2002), Sec 1.14.1, p 19.
     *
     * @param[in] x
     * @return exp(\e x) - 1.
     **********************************************************************/
    template<typename T>
    static inline T expm1(T x) throw() {
      volatile T
        y = std::exp(x),
        z = y - 1;
      // The reasoning here is similar to that for log1p.  The expression
      // mathematically reduces to exp(x) - 1, and the factor z/log(y) = (y -
      // 1)/log(y) is a slowly varying quantity near y = 1 and is accurately
      // computed.
      return std::abs(x) > 1 ? z : z == 0 ?  x : x * z / std::log(y);
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T expm1(T x) throw() { return std::expm1(x); }
#else
    static inline double expm1(double x) throw() { return ::expm1(x); }
    static inline float expm1(float x) throw() { return ::expm1f(x); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double expm1(long double x) throw()
    { return ::expm1l(x); }
#endif
#endif

#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
    /**
     * log(\e x + 1) accurate near \e x = 0.  This is taken See
     * D. Goldberg,
     * <a href="http://docs.sun.com/source/806-3568/ncg_goldberg.html"> What
     * every computer scientist should know about floating-point arithmetic</a>
     * (1991), Theorem 4.  See also, Higham (op. cit.), Answer to Problem 1.5,
     * p 528.
     *
     * @param[in] x
     * @return log(\e x + 1).
     **********************************************************************/
    template<typename T>
    static inline T log1p(T x) throw() {
      volatile T
        y = 1 + x,
        z = y - 1;
      // Here's the explanation for this magic: y = 1 + z, exactly, and z
      // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
      // a good approximation to the true log(1 + x)/x.  The multiplication x *
      // (log(y)/z) introduces little additional error.
      return z == 0 ? x : x * std::log(y) / z;
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T log1p(T x) throw() { return std::log1p(x); }
#else
    static inline double log1p(double x) throw() { return ::log1p(x); }
    static inline float log1p(float x) throw() { return ::log1pf(x); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double log1p(long double x) throw()
    { return ::log1pl(x); }
#endif
#endif

#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
    /**
     * The inverse hyperbolic sine function.  This is defined in terms of
     * Math::log1p(\e x) in order to maintain accuracy near \e x = 0.  In
     * addition, the odd parity of the function is enforced.
     *
     * @param[in] x
     * @return asinh(\e x).
     **********************************************************************/
    template<typename T>
    static inline T asinh(T x) throw() {
      T y = std::abs(x);     // Enforce odd parity
      y = log1p(y * (1 + y/(hypot(T(1), y) + 1)));
      return x < 0 ? -y : y;
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T asinh(T x) throw() { return std::asinh(x); }
#else
    static inline double asinh(double x) throw() { return ::asinh(x); }
    static inline float asinh(float x) throw() { return ::asinhf(x); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double asinh(long double x) throw()
    { return ::asinhl(x); }
#endif
#endif

#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
    /**
     * The inverse hyperbolic tangent function.  This is defined in terms of
     * Math::log1p(\e x) in order to maintain accuracy near \e x = 0.  In
     * addition, the odd parity of the function is enforced.
     *
     * @param[in] x
     * @return atanh(\e x).
     **********************************************************************/
    template<typename T>
    static inline T atanh(T x) throw() {
      T y = std::abs(x);     // Enforce odd parity
      y = log1p(2 * y/(1 - y))/2;
      return x < 0 ? -y : y;
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T atanh(T x) throw() { return std::atanh(x); }
#else
    static inline double atanh(double x) throw() { return ::atanh(x); }
    static inline float atanh(float x) throw() { return ::atanhf(x); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double atanh(long double x) throw()
    { return ::atanhl(x); }
#endif
#endif

#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
    /**
     * The cube root function.
     *
     * @param[in] x
     * @return the real cube root of \e x.
     **********************************************************************/
    template<typename T>
    static inline T cbrt(T x) throw() {
      T y = std::pow(std::abs(x), 1/T(3)); // Return the real cube root
      return x < 0 ? -y : y;
    }
#elif GEOGRAPHICLIB_CPLUSPLUS0X_MATH
    template<typename T>
    static inline T cbrt(T x) throw() { return std::cbrt(x); }
#else
    static inline double cbrt(double x) throw() { return ::cbrt(x); }
    static inline float cbrt(float x) throw() { return ::cbrtf(x); }
#if !defined(__NO_LONG_DOUBLE_MATH)
    static inline long double cbrt(long double x) throw() { return ::cbrtl(x); }
#endif
#endif

    /**
     * Test for finiteness.
     *
     * @param[in] x
     * @return true if number is finite, false if NaN or infinite.
     **********************************************************************/
    template<typename T>
    static inline bool isfinite(T x) throw() {
#if defined(DOXYGEN)
      return std::abs(x) <= std::numeric_limits<T>::max();
#elif (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
      return _finite(x) != 0;
#else
      return std::isfinite(x);
#endif
    }

    /**
     * The NaN (not a number)
     *
     * @return NaN if available, otherwise return the max real.
     **********************************************************************/
    template<typename T>
    static inline T NaN() throw() {
      return std::numeric_limits<T>::has_quiet_NaN ?
        std::numeric_limits<T>::quiet_NaN() :
        std::numeric_limits<T>::max();
    }
    /**
     * A synonym for NaN<real>().
     **********************************************************************/
    static inline real NaN() throw() { return NaN<real>(); }

    /**
     * Test for NaN.
     *
     * @param[in] x
     * @return true if argument is a NaN.
     **********************************************************************/
    template<typename T>
    static inline bool isnan(T x) throw() {
#if defined(DOXYGEN) || (defined(_MSC_VER) && !GEOGRAPHICLIB_CPLUSPLUS0X_MATH)
      return x != x;
#else
      return std::isnan(x);
#endif
    }

    /**
     * Infinity
     *
     * @return infinity if available, otherwise return the max real.
     **********************************************************************/
    template<typename T>
    static inline T infinity() throw() {
      return std::numeric_limits<T>::has_infinity ?
        std::numeric_limits<T>::infinity() :
        std::numeric_limits<T>::max();
    }
    /**
     * A synonym for infinity<real>().
     **********************************************************************/
    static inline real infinity() throw() { return infinity<real>(); }
  };

  /**
   * \brief %Constants needed by %GeographicLib
   *
   * Define constants specifying the WGS84 ellipsoid, the UTM and UPS
   * projections, and various unit conversions.
   **********************************************************************/
  class Constants {
  private:
    typedef Math::real real;
    Constants();                // Disable constructor

  public:
    /**
     * <b>DEPRECATED</b> A synonym for Math::pi<real>().
     **********************************************************************/
    static inline Math::real pi() throw() { return Math::pi<real>(); }
    /**
     * A synonym for Math::degree<real>().
     **********************************************************************/
    static inline Math::real degree() throw() { return Math::degree<real>(); }
    /**
     * @return the number of radians in an arcminute.
     **********************************************************************/
    static inline Math::real arcminute() throw()
    { return Math::degree<real>() / 60; }
    /**
     * @return the number of radians in an arcsecond.
     **********************************************************************/
    static inline Math::real arcsecond() throw()
    { return Math::degree<real>() / 3600; }

    /** \name Ellipsoid parameters
     **********************************************************************/
    ///@{
    /**
     * @return the equatorial radius of WGS84 ellipsoid
     **********************************************************************/
    template<typename T>
    static inline T WGS84_a() throw() { return T(6378137) * meter<T>(); }
    /**
     * A synonym for WGS84_a<real>().
     **********************************************************************/
    static inline Math::real WGS84_a() throw() { return WGS84_a<real>(); }
    /**
     * @return the reciprocal flattening of WGS84 ellipsoid
     **********************************************************************/
    template<typename T>
    static inline T WGS84_r() throw() {
      // 298.257223563 = 3393 * 87903691 / 1000000000
      return (T(3393) * T(87903691)) / T(1000000000);
    }
    /**
     * A synonym for WGS84_r<real>().
     **********************************************************************/
    static inline Math::real WGS84_r() throw() { return WGS84_r<real>(); }
    /**
     * @return the central scale factor for UTM
     **********************************************************************/
    template<typename T>
    static inline T UTM_k0() throw() {return T(9996) / T(10000); } // 0.9996
    /**
     * A synonym for UTM_k0<real>().
     **********************************************************************/
    static inline Math::real UTM_k0() throw() { return UTM_k0<real>(); }
    /**
     * @return the central scale factor for UPS
     **********************************************************************/
    template<typename T>
    static inline T UPS_k0() throw() { return T(994) / T(1000); } // 0.994
    /**
     * A synonym for UPS_k0<real>().
     **********************************************************************/
    static inline Math::real UPS_k0() throw() { return UPS_k0<real>(); }
    ///@}

    /** \name SI units
     **********************************************************************/
    ///@{
    /**
     * @return the number of meters in a meter.
     *
     * This is unity, but this lets the internal system of units be changed if
     * necessary.
     **********************************************************************/
    template<typename T>
    static inline T meter() throw() { return T(1); }
    /**
     * A synonym for meter<real>().
     **********************************************************************/
    static inline Math::real meter() throw() { return meter<real>(); }
    /**
     * @return the number of meters in a kilometer.
     **********************************************************************/
    static inline Math::real kilometer() throw()
    { return 1000 * meter<real>(); }
    /**
     * @return the number of meters in a nautical mile (approximately 1 arc
     *   minute)
     **********************************************************************/
    static inline Math::real nauticalmile() throw()
    { return 1852 * meter<real>(); }
    ///@}

    /** \name Anachronistic British units
     **********************************************************************/
    ///@{
    /**
     * @return the number of meters in an international foot.
     **********************************************************************/
    static inline Math::real foot() throw()
    { return real(0.0254L) * 12 * meter<real>(); }
    /**
     * @return the number of meters in a yard.
     **********************************************************************/
    static inline Math::real yard() throw() { return 3 * foot(); }
    /**
     * @return the number of meters in a fathom.
     **********************************************************************/
    static inline Math::real fathom() throw() { return 2 * yard(); }
    /**
     * @return the number of meters in a chain.
     **********************************************************************/
    static inline Math::real chain() throw() { return 22 * yard(); }
    /**
     * @return the number of meters in a furlong.
     **********************************************************************/
    static inline Math::real furlong() throw() { return 10 * chain(); }
    /**
     * @return the number of meters in a statute mile.
     **********************************************************************/
    static inline Math::real mile() throw() { return 8 * furlong(); }
    ///@}

    /** \name Anachronistic US units
     **********************************************************************/
    ///@{
    /**
     * @return the number of meters in a US survey foot.
     **********************************************************************/
    static inline Math::real surveyfoot() throw()
    { return real(1200) / real(3937) * meter<real>(); }
    ///@}
  };

  /**
   * \brief %Exception handling for %GeographicLib
   *
   * A class to handle exceptions.  It's derived off std::runtime_error so it
   * can be caught by the usual catch clauses.
   **********************************************************************/
  class GeographicErr : public std::runtime_error {
  public:

    /**
     * Constructor
     *
     * @param[in] msg a string message, which is accessible in the catch
     *   clause, via what().
     **********************************************************************/
    GeographicErr(const std::string& msg) : std::runtime_error(msg) {}
  };

} // namespace GeographicLib

#endif