/usr/include/gecode/set/int/minmax.hpp is in libgecode-dev 3.7.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <tack@gecode.org>
* Christian Schulte <schulte@gecode.org>
* Gabor Szokoli <szokoli@gecode.org>
* Denys Duchier <denys.duchier@univ-orleans.fr>
*
* Copyright:
* Guido Tack, 2004
* Christian Schulte, 2004
* Gabor Szokoli, 2004
*
* Last modified:
* $Date: 2010-07-14 17:46:18 +0200 (Wed, 14 Jul 2010) $ by $Author: schulte $
* $Revision: 11192 $
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/set.hh>
#include <gecode/int.hh>
namespace Gecode { namespace Set { namespace Int {
template<class View>
forceinline
MinElement<View>::MinElement(Home home, View y0, Gecode::Int::IntView y1)
: MixBinaryPropagator<View,PC_SET_ANY,Gecode::Int::IntView,Gecode::Int::PC_INT_BND> (home, y0, y1) {}
template<class View>
forceinline ExecStatus
MinElement<View>::post(Home home, View x0, Gecode::Int::IntView x1) {
GECODE_ME_CHECK(x0.cardMin(home,1));
(void) new (home) MinElement(home,x0,x1);
return ES_OK;
}
template<class View>
forceinline
MinElement<View>::MinElement(Space& home, bool share, MinElement& p)
: MixBinaryPropagator<View,PC_SET_ANY,Gecode::Int::IntView,Gecode::Int::PC_INT_BND> (home, share, p) {}
template<class View>
Actor*
MinElement<View>::copy(Space& home, bool share) {
return new (home) MinElement(home,share,*this);
}
template<class View>
ExecStatus
MinElement<View>::propagate(Space& home, const ModEventDelta&) {
//x1 is an element of x0.ub
//x1 =< smallest element of x0.lb
//x1 =< x0.cardinialityMin-est largest element of x0.ub
//(these 2 take care of determined x0)
//No element in x0 is smaller than x1
//if x1 is determined, it is part of the ub.
//Consequently:
//The domain of x1 is a subset of x0.ub up to the first element in x0.lb.
//x0 lacks everything smaller than smallest possible x1.
{
LubRanges<View> ub(x0);
GECODE_ME_CHECK(x1.inter_r(home,ub,false));
}
GECODE_ME_CHECK(x1.lq(home,x0.glbMin()));
//if cardMin>lbSize?
assert(x0.cardMin()>=1);
{
/// Compute n-th largest element in x0.lub for n = x0.cardMin()-1
unsigned int size = 0;
int maxN = BndSet::MAX_OF_EMPTY;
for (LubRanges<View> ubr(x0); ubr(); ++ubr, ++size) {}
Region r(home);
int* ub = r.alloc<int>(size*2);
int i=0;
for (LubRanges<View> ubr(x0); ubr(); ++ubr, ++i) {
ub[2*i] = ubr.min();
ub[2*i+1] = ubr.max();
}
unsigned int x0cm = x0.cardMin()-1;
for (unsigned int i=size; i--;) {
unsigned int width = static_cast<unsigned int>(ub[2*i+1]-ub[2*i]+1);
if (width > x0cm) {
maxN = static_cast<int>(ub[2*i+1]-x0cm);
break;
}
x0cm -= width;
}
GECODE_ME_CHECK(x1.lq(home,maxN));
}
GECODE_ME_CHECK( x0.exclude(home,
Limits::min, x1.min()-1) );
if (x1.assigned()) {
GECODE_ME_CHECK(x0.include(home,x1.val()));
GECODE_ME_CHECK(x0.exclude(home,
Limits::min, x1.val()-1));
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
template<class View>
forceinline
NotMinElement<View>::NotMinElement(Home home, View y0,
Gecode::Int::IntView y1)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM> (home, y0, y1) {}
template<class View>
forceinline ExecStatus
NotMinElement<View>::post(Home home, View x0, Gecode::Int::IntView x1) {
(void) new (home) NotMinElement(home,x0,x1);
return ES_OK;
}
template<class View>
forceinline
NotMinElement<View>::NotMinElement(Space& home, bool share,
NotMinElement& p)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM> (home, share, p) {}
template<class View>
Actor*
NotMinElement<View>::copy(Space& home, bool share) {
return new (home) NotMinElement(home,share,*this);
}
template<class View>
ExecStatus
NotMinElement<View>::propagate(Space& home, const ModEventDelta&) {
// cheap tests for entailment:
// if x0 is empty, then entailed
// if max(x1) < min(x0.lub) or min(x1) > max(x0.lub), then entailed
// if min(x0.glb) < min(x1), then entailed
if ((x0.cardMax() == 0) ||
((x1.max() < x0.lubMin()) || (x1.min() > x0.lubMax())) ||
((x0.glbSize() > 0) && (x0.glbMin() < x1.min())))
return home.ES_SUBSUMED(*this);
// if x1 is determined and = x0.lub.min: remove it from x0,
// then entailed
if (x1.assigned() && x1.val()==x0.lubMin()) {
GECODE_ME_CHECK(x0.exclude(home,x1.val()));
return home.ES_SUBSUMED(*this);
}
// if min(x0) is decided: remove min(x0) from the domain of x1
// then entailed
if (x0.glbMin() == x0.lubMin()) {
GECODE_ME_CHECK(x1.nq(home,x0.glbMin()));
return home.ES_SUBSUMED(*this);
}
// if x1 is determined and = x0.glb.min, then we need at least
// one more element; if there is only one below, then we must
// take it.
if (x1.assigned() && x0.glbSize() > 0 && x1.val()==x0.glbMin()) {
unsigned int oldGlbSize = x0.glbSize();
// if there is only 1 unknown below x1, then we must take it
UnknownRanges<View> ur(x0);
assert(ur());
// the iterator is not empty: otherwise x0 would be determined
// and min(x0) would have been decided and the preceding if
// would have caught it. Also, the first range is not above
// x1 otherwise the very first if would have caught it.
// so let's check if the very first range of unknowns is of
// size 1 and there is no second one or it starts above x1.
if (ur.width()==1) {
int i=ur.min();
++ur;
if (!ur() || ur.min()>x1.val()) {
GECODE_ME_CHECK(x0.include(home,i));
return home.ES_SUBSUMED(*this);
}
}
GECODE_ME_CHECK(x0.cardMin(home, oldGlbSize+1));
}
// if dom(x1) and lub(x0) are disjoint, then entailed;
{
LubRanges<View> ub(x0);
Gecode::Int::ViewRanges<Gecode::Int::IntView> d(x1);
Gecode::Iter::Ranges::Inter<LubRanges<View>,
Gecode::Int::ViewRanges<Gecode::Int::IntView> > ir(ub,d);
if (!ir()) return home.ES_SUBSUMED(*this);
}
// x0 is fated to eventually contain at least x0.cardMin elements.
// therefore min(x0) <= x0.cardMin-th largest element of x0.lub
// if x1 > than that, then entailed.
{
// to find the x0.cardMin-th largest element of x0.lub, we need
// some sort of reverse range iterator. we will need to fake one
// by storing the ranges of the forward iterator in an array.
// first we need to know how large the array needs to be. so, let's
// count the ranges:
int num_ranges = 0;
for (LubRanges<View> ur(x0); ur(); ++ur, ++num_ranges) {}
// create an array for storing min and max of each range
Region r(home);
int* _ur = r.alloc<int>(num_ranges*2);
// now, we fill the array:
int i = 0;
for (LubRanges<View> ur(x0); ur(); ++ur, ++i) {
_ur[2*i ] = ur.min();
_ur[2*i+1] = ur.max();
}
// now we search from the top the range that contains the
// nth largest value.
unsigned int n = x0.cardMin();
int nth_largest = BndSet::MAX_OF_EMPTY;
for (int i=num_ranges; i--; ) {
// number of values in range
unsigned int num_values = static_cast<unsigned int>(_ur[2*i+1]-_ur[2*i]+1);
// does the range contain the value?
if (num_values >= n) {
// record it and exit the loop
nth_largest = static_cast<int>(_ur[2*i+1]-n+1);
break;
}
// otherwise, we skipped num_values
n -= num_values;
}
// if x1.min > nth_largest, then entailed
if (x1.min() > nth_largest)
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
template<class View>
forceinline
ReMinElement<View>::ReMinElement(Home home, View y0, Gecode::Int::IntView y1,
Gecode::Int::BoolView b2)
: Gecode::Int::ReMixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM,
Gecode::Int::BoolView> (home, y0, y1, b2) {}
template<class View>
forceinline ExecStatus
ReMinElement<View>::post(Home home, View x0, Gecode::Int::IntView x1,
Gecode::Int::BoolView b2) {
(void) new (home) ReMinElement(home,x0,x1,b2);
return ES_OK;
}
template<class View>
forceinline
ReMinElement<View>::ReMinElement(Space& home, bool share, ReMinElement& p)
: Gecode::Int::ReMixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM,
Gecode::Int::BoolView> (home, share, p) {}
template<class View>
Actor*
ReMinElement<View>::copy(Space& home, bool share) {
return new (home) ReMinElement(home,share,*this);
}
template<class View>
ExecStatus
ReMinElement<View>::propagate(Space& home, const ModEventDelta&) {
// check if b is determined
if (b.one())
GECODE_REWRITE(*this, (MinElement<View>::post(home(*this),x0,x1)));
if (b.zero())
GECODE_REWRITE(*this, (NotMinElement<View>::post(home(*this),x0,x1)));
// cheap tests for => b=0
// if x0 is empty, then b=0 and entailed
// if max(x1) < min(x0.lub) or min(x1) > max(x0.lub), then b=0 and entailed
// if min(x0.glb) < min(x1), then b=0 and entailed
if ((x0.cardMax() == 0) ||
((x1.max() < x0.lubMin()) || (x1.min() > x0.lubMax())) ||
((x0.glbSize() > 0) && (x0.glbMin() < x1.min())))
{
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
// if min(x0) is decided
if (x0.glbMin() == x0.lubMin()) {
// if x1 is det: check if = min(x0), assign b, entailed
if (x1.assigned()) {
if (x1.val() == x0.glbMin()) {
GECODE_ME_CHECK(b.one(home));
} else {
GECODE_ME_CHECK(b.zero(home));
}
return home.ES_SUBSUMED(*this);
}
// if min(x0) not in dom(x1): b=0, entailed
else if ((x0.glbMin() < x1.min()) ||
(x0.glbMin() > x1.max()) ||
!x1.in(x0.glbMin()))
{
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
}
// // if dom(x1) and lub(x0) are disjoint, then b=0, entailed;
// {
// LubRanges<View> ub(x0);
// Gecode::Int::ViewRanges<Gecode::Int::IntView> d(x1);
// Gecode::Iter::Ranges::Inter<LubRanges<View>,
// Gecode::Int::ViewRanges<Gecode::Int::IntView> > ir(ub,d);
// if (!ir()) {
// GECODE_ME_CHECK(b.zero(home));
// return home.ES_SUBSUMED(*this);
// }
// }
// // x0 is fated to eventually contain at least x0.cardMin elements.
// // therefore min(x0) <= x0.cardMin-th largest element of x0.lub
// // if x1 > than that, then b=0 and entailed.
// {
// // to find the x0.cardMin-th largest element of x0.lub, we need
// // some sort of reverse range iterator. we will need to fake one
// // by storing the ranges of the forward iterator in an array.
// // first we need to know how large the array needs to be. so, let's
// // count the ranges:
// int num_ranges = 0;
// for (LubRanges<View> ur(x0); ur(); ++ur, ++num_ranges) {}
// // create an array for storing min and max of each range
// Region re(home);
// int* _ur = re.alloc<int>(num_ranges*2);
// // now, we fill the array:
// int i = 0;
// for (LubRanges<View> ur(x0); ur(); ++ur, ++i) {
// _ur[2*i ] = ur.min();
// _ur[2*i+1] = ur.max();
// }
// // now we search from the top the range that contains the
// // nth largest value.
// int n = x0.cardMin();
// int nth_largest = BndSet::MAX_OF_EMPTY;
// for (int i=num_ranges; i--; ) {
// // number of values in range
// int num_values = _ur[2*i+1]-_ur[2*i]+1;
// // does the range contain the value?
// if (num_values >= n)
// {
// // record it and exit the loop
// nth_largest = _ur[2*i+1]-n+1;
// break;
// }
// // otherwise, we skipped num_values
// n -= num_values;
// }
// // if x1.min > nth_largest, then entailed
// if (x1.min() > nth_largest) {
// GECODE_ME_CHECK(b.zero(home));
// return home.ES_SUBSUMED(*this);
// }
// }
return ES_FIX;
}
template<class View>
forceinline
MaxElement<View>::MaxElement(Home home, View y0, Gecode::Int::IntView y1)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_BND> (home, y0, y1) {}
template<class View>
forceinline
MaxElement<View>::MaxElement(Space& home, bool share, MaxElement& p)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_BND> (home, share, p) {}
template<class View>
ExecStatus
MaxElement<View>::post(Home home, View x0,
Gecode::Int::IntView x1) {
GECODE_ME_CHECK(x0.cardMin(home,1));
(void) new (home) MaxElement(home,x0,x1);
return ES_OK;
}
template<class View>
Actor*
MaxElement<View>::copy(Space& home, bool share) {
return new (home) MaxElement(home,share,*this);
}
template<class View>
ExecStatus
MaxElement<View>::propagate(Space& home, const ModEventDelta&) {
LubRanges<View> ub(x0);
GECODE_ME_CHECK(x1.inter_r(home,ub,false));
GECODE_ME_CHECK(x1.gq(home,x0.glbMax()));
assert(x0.cardMin()>=1);
GECODE_ME_CHECK(x1.gq(home,x0.lubMinN(x0.cardMin()-1)));
GECODE_ME_CHECK(x0.exclude(home,
x1.max()+1,Limits::max) );
if (x1.assigned()) {
GECODE_ME_CHECK(x0.include(home,x1.val()));
GECODE_ME_CHECK( x0.exclude(home,
x1.val()+1,Limits::max) );
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
template<class View>
forceinline
NotMaxElement<View>::NotMaxElement(Home home, View y0,
Gecode::Int::IntView y1)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM> (home, y0, y1) {}
template<class View>
forceinline
NotMaxElement<View>::NotMaxElement(Space& home, bool share,
NotMaxElement& p)
: MixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM> (home, share, p) {}
template<class View>
ExecStatus
NotMaxElement<View>::post(Home home, View x0, Gecode::Int::IntView x1) {
(void) new (home) NotMaxElement(home,x0,x1);
return ES_OK;
}
template<class View>
Actor*
NotMaxElement<View>::copy(Space& home, bool share) {
return new (home) NotMaxElement(home,share,*this);
}
template<class View>
ExecStatus
NotMaxElement<View>::propagate(Space& home, const ModEventDelta&) {
// cheap tests for entailment:
// if x0 is empty, then entailed
// if max(x1) < min(x0.lub) or min(x1) > max(x0.lub), then entailed
// if max(x0.glb) > max(x1), then entailed
if ((x0.cardMax() == 0) ||
((x1.max() < x0.lubMin()) || (x1.min() > x0.lubMax())) ||
((x0.glbSize() > 0) && (x0.glbMax() > x1.max())))
return home.ES_SUBSUMED(*this);
// if x1 is determined and = max(x0.lub): remove it from x0,
// then entailed
if (x1.assigned() && x1.val()==x0.lubMax()) {
GECODE_ME_CHECK(x0.exclude(home,x1.val()));
return home.ES_SUBSUMED(*this);
}
// if max(x0) is decided: remove max(x0) from the domain of x1
// then entailed
if (x0.glbMax() == x0.lubMax()) {
GECODE_ME_CHECK(x1.nq(home,x0.glbMax()));
return home.ES_SUBSUMED(*this);
}
// if x1 is determined and = max(x0.glb), then we need at least
// one more element; if there is only one above, then we must
// take it.
if (x1.assigned() && x0.glbSize() > 0 && x1.val()==x0.glbMax()) {
unsigned int oldGlbSize = x0.glbSize();
// if there is only 1 unknown above x1, then we must take it
UnknownRanges<View> ur(x0);
// there is at least one unknown above x1 otherwise it would
// have been caught by the if for x1=max(x0.lub)
while (ur.max() < x1.val()) {
assert(ur());
++ur;
};
// if the first range above x1 contains just 1 element,
// and is the last range, then take that element
if (ur.width() == 1) {
int i = ur.min();
++ur;
if (!ur()) {
// last range
GECODE_ME_CHECK(x0.include(home,i));
return home.ES_SUBSUMED(*this);
}
}
GECODE_ME_CHECK(x0.cardMin(home, oldGlbSize+1));
}
// if dom(x1) and lub(x0) are disjoint, then entailed
{
LubRanges<View> ub(x0);
Gecode::Int::ViewRanges<Gecode::Int::IntView> d(x1);
Gecode::Iter::Ranges::Inter<LubRanges<View>,
Gecode::Int::ViewRanges<Gecode::Int::IntView> > ir(ub,d);
if (!ir()) return home.ES_SUBSUMED(*this);
}
// x0 is fated to eventually contain at least x0.cardMin elements.
// therefore max(x0) >= x0.cardMin-th smallest element of x0.lub.
// if x1 < than that, then entailed.
{
unsigned int n = x0.cardMin();
int nth_smallest = BndSet::MIN_OF_EMPTY;
for (LubRanges<View> ur(x0); ur(); ++ur) {
if (ur.width() >= n) {
// record it and exit the loop
nth_smallest = static_cast<int>(ur.min() + n - 1);
break;
}
// otherwise, we skipped ur.width() values
n -= ur.width();
}
// if x1.max < nth_smallest, then entailed
if (x1.max() < nth_smallest)
return home.ES_SUBSUMED(*this);
}
return ES_FIX;
}
template<class View>
forceinline
ReMaxElement<View>::ReMaxElement(Home home, View y0, Gecode::Int::IntView y1,
Gecode::Int::BoolView b2)
: Gecode::Int::ReMixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM,
Gecode::Int::BoolView> (home, y0, y1, b2) {}
template<class View>
forceinline
ReMaxElement<View>::ReMaxElement(Space& home, bool share, ReMaxElement& p)
: Gecode::Int::ReMixBinaryPropagator<View,PC_SET_ANY,
Gecode::Int::IntView,Gecode::Int::PC_INT_DOM,
Gecode::Int::BoolView> (home, share, p) {}
template<class View>
ExecStatus
ReMaxElement<View>::post(Home home, View x0,
Gecode::Int::IntView x1,
Gecode::Int::BoolView b2) {
(void) new (home) ReMaxElement(home,x0,x1,b2);
return ES_OK;
}
template<class View>
Actor*
ReMaxElement<View>::copy(Space& home, bool share) {
return new (home) ReMaxElement(home,share,*this);
}
template<class View>
ExecStatus
ReMaxElement<View>::propagate(Space& home, const ModEventDelta&) {
// check if b is determined
if (b.one())
GECODE_REWRITE(*this, (MaxElement<View>::post(home(*this),x0,x1)));
if (b.zero())
GECODE_REWRITE(*this, (NotMaxElement<View>::post(home(*this),x0,x1)));
// cheap tests for => b=0
// if x0 is empty, then b=0 and entailed
// if max(x1) < min(x0.lub) or min(x1) > max(x0.lub), then b=0 and entailed
// if max(x0.glb) > max(x1), then b=0 and entailed
if ((x0.cardMax() == 0) ||
((x1.max() < x0.lubMin()) || (x1.min() > x0.lubMax())) ||
((x0.glbSize() > 0) && (x0.glbMax() > x1.max())))
{
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
// if max(x0) is decided
if (x0.glbMax() == x0.lubMax()) {
// if x1 is det: check if = max(x0), assign b, entailed
if (x1.assigned()) {
if (x1.val() == x0.glbMax()) {
GECODE_ME_CHECK(b.one(home));
} else {
GECODE_ME_CHECK(b.zero(home));
}
return home.ES_SUBSUMED(*this);
}
// if max(x0) not in dom(x1): b=0, entailed
else if ((x0.glbMax() < x1.min()) ||
(x0.glbMax() > x1.max()) ||
!x1.in(x0.glbMax()))
{
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
}
// if dom(x1) and lub(x0) are disjoint, then b=0, entailed
{
LubRanges<View> ub(x0);
Gecode::Int::ViewRanges<Gecode::Int::IntView> d(x1);
Gecode::Iter::Ranges::Inter<LubRanges<View>,
Gecode::Int::ViewRanges<Gecode::Int::IntView> > ir(ub,d);
if (!ir()) {
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
}
// x0 is fated to eventually contain at least x0.cardMin elements.
// therefore max(x0) >= x0.cardMin-th smallest element of x0.lub.
// if x1 < than that, then b=0, entailed.
{
unsigned int n = x0.cardMin();
int nth_smallest = BndSet::MIN_OF_EMPTY;
for (LubRanges<View> ur(x0); ur(); ++ur) {
if (ur.width() >= n)
{
// record it and exit the loop
nth_smallest = static_cast<int>(ur.min() + n - 1);
break;
}
// otherwise, we skipped ur.width() values
n -= ur.width();
}
// if x1.max < nth_smallest, then entailed
if (x1.max() < nth_smallest) {
GECODE_ME_CHECK(b.zero(home));
return home.ES_SUBSUMED(*this);
}
}
return ES_FIX;
}
}}}
// STATISTICS: set-prop
|