/usr/include/dolfin/fem/UFCCell.h is in libdolfin1.0-dev 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | // Copyright (C) 2007-2011 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Ola Skavhaug, 2009.
// Modified by Garth N. Wells, 2010.
//
// First added: 2007-03-01
// Last changed: 2011-11-14
#ifndef __UFC_CELL_H
#define __UFC_CELL_H
#include <vector>
#include <dolfin/common/types.h>
#include <dolfin/common/MPI.h>
#include <dolfin/log/dolfin_log.h>
#include <dolfin/mesh/Cell.h>
#include <dolfin/mesh/MeshEntity.h>
#include <dolfin/mesh/MeshFunction.h>
#include <dolfin/mesh/Mesh.h>
#include <dolfin/mesh/ParallelData.h>
#include <dolfin/fem/ufcexp.h>
namespace dolfin
{
/// This class is simple wrapper for a UFC cell and provides
/// a layer between a DOLFIN cell and a UFC cell. When run in
/// parallel, it attempts to use global numbering.
class UFCCell : public ufcexp::cell
{
public:
/// Create UFC cell from DOLFIN cell
UFCCell(const Cell& cell, bool use_global_indices=true) : ufcexp::cell(),
use_global_indices(use_global_indices),
num_vertices(0), num_higher_order_vertices(0)
{
init(cell);
}
/// Create UFC cell for first DOLFIN cell in mesh
UFCCell(const Mesh& mesh, bool use_global_indices=true) : ufcexp::cell(),
use_global_indices(use_global_indices),
num_vertices(0), num_higher_order_vertices(0)
{
CellIterator cell(mesh);
init(*cell);
}
/// Destructor
~UFCCell()
{ clear(); }
/// Initialize UFC cell data
void init(const Cell& cell)
{
// Clear old data
clear();
// Set cell shape
switch (cell.type())
{
case CellType::interval:
cell_shape = ufc::interval;
num_vertices = 2;
break;
case CellType::triangle:
cell_shape = ufc::triangle;
num_vertices = 3;
break;
case CellType::tetrahedron:
cell_shape = ufc::tetrahedron;
num_vertices = 4;
break;
default:
dolfin_error("UFCCell.h",
"create UFC cell wrapper",
"Unknown cell type (%d)", cell.type());
}
// Mesh
const Mesh& mesh = cell.mesh();
// Set topological dimension
topological_dimension = mesh.topology().dim();
// Set geometric dimension
geometric_dimension = mesh.geometry().dim();
// Allocate arrays for local entity indices
entity_indices = new uint*[topological_dimension + 1];
for (uint d = 0; d < topological_dimension; d++)
{
// Store number of cell entities allocated for (this can change between
// init() and update() which is why it's stored)
num_cell_entities.push_back(cell.num_entities(d));
if (cell.num_entities(d) > 0)
entity_indices[d] = new uint[cell.num_entities(d)];
else
entity_indices[d] = 0;
}
entity_indices[topological_dimension] = new uint[1];
// Get global entity indices (if any)
global_entities.resize(topological_dimension + 1);
const ParallelData& parallel_data = mesh.parallel_data();
for (uint d = 0; d <= topological_dimension; ++d)
{
if (parallel_data.have_global_entity_indices(d))
global_entities[d] = &(parallel_data.global_entity_indices(d));
else
global_entities[d] = 0;
}
// Allocate vertex coordinates
coordinates = new double*[num_vertices];
// Allocate higher order vertex coordinates
num_higher_order_vertices = cell.mesh().geometry().num_higher_order_vertices_per_cell();
higher_order_coordinates = new double*[num_higher_order_vertices];
// Update cell data
update(cell);
}
// Clear UFC cell data
void clear()
{
if (entity_indices)
{
for (uint d = 0; d <= topological_dimension; d++)
delete [] entity_indices[d];
}
delete [] entity_indices;
entity_indices = 0;
global_entities.clear();
delete [] coordinates;
coordinates = 0;
delete [] higher_order_coordinates;
higher_order_coordinates = 0;
cell_shape = ufc::interval;
topological_dimension = 0;
geometric_dimension = 0;
}
// Update cell entities and coordinates
// Note: We use MeshEntity& rather than Cell& to avoid a gcc 4.4.1 warning
void update(const MeshEntity& cell, int local_facet=-1)
{
dolfin_assert(cell.dim() == topological_dimension);
// Note handling of local and global mesh entity indices.
// If mappings from local to global entities are available in
// MeshData ("global entity indices %d") then those are used.
// Otherwise, local entities are used. It is the responsibility
// of the DofMap class to create the local-to-global mapping of
// entity indices when running in parallel. In that sense, this
// class is not parallel aware. It just uses the local-to-global
// mapping when it is available.
// Set mesh identifier
mesh_identifier = cell.mesh_id();
// Set local facet (-1 means no local facet set)
this->local_facet = local_facet;
// Copy local entity indices from mesh
const uint D = topological_dimension;
for (uint d = 0; d < D; ++d)
{
for (uint i = 0; i < num_cell_entities[d]; ++i)
entity_indices[d][i] = cell.entities(d)[i];
}
// Set cell index
entity_indices[D][0] = cell.index();
index = cell.index();
// Map to global entity indices (if any)
for (uint d = 0; d < D; ++d)
{
if (use_global_indices && global_entities[d])
{
for (uint i = 0; i < num_cell_entities[d]; ++i)
entity_indices[d][i] = (*global_entities[d])[entity_indices[d][i]];
}
}
if (use_global_indices && global_entities[D])
entity_indices[D][0] = (*global_entities[D])[entity_indices[D][0]];
// Set vertex coordinates
const uint* vertices = cell.entities(0);
for (uint i = 0; i < num_vertices; i++)
coordinates[i] = const_cast<double*>(cell.mesh().geometry().x(vertices[i]));
// Set higher order vertex coordinates
if (num_higher_order_vertices > 0)
{
const uint current_cell_index = cell.index();
const uint* higher_order_vertex_indices = cell.mesh().geometry().higher_order_cell(current_cell_index);
for (uint i = 0; i < num_higher_order_vertices; i++)
higher_order_coordinates[i] = const_cast<double*>(cell.mesh().geometry().higher_order_x(higher_order_vertex_indices[i]));
}
}
private:
// True it global entity indices should be used
const bool use_global_indices;
// Number of cell vertices
uint num_vertices;
// Number of higher order cell vertices
uint num_higher_order_vertices;
// Mappings from local to global entity indices (if any)
std::vector<const MeshFunction<uint>* > global_entities;
// Number of cell entities of dimension d at initialisation
std::vector<uint> num_cell_entities;
};
}
#endif
|