/usr/include/dolfin/adaptivity/Extrapolation.h is in libdolfin1.0-dev 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | // Copyright (C) 2009 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Marie E. Rognes 2010.
// Modified by Garth N. Wells 2010.
//
// First added: 2009-12-08
// Last changed: 2010-12-28
#ifndef __EXTRAPOLATION_H
#define __EXTRAPOLATION_H
#include <map>
#include <set>
#include <vector>
#include <dolfin/common/types.h>
namespace arma
{
template <typename T> class Mat;
template <typename T> class Col;
}
namespace ufc
{
class cell;
}
namespace dolfin
{
class Cell;
class DirichletBC;
class Function;
class FunctionSpace;
/// This class implements an algorithm for extrapolating a function
/// on a given function space from an approximation of that function
/// on a possibly lower-order function space.
///
/// This can be used to obtain a higher-order approximation of a
/// computed dual solution, which is necessary when the computed
/// dual approximation is in the test space of the primal problem,
/// thereby being orthogonal to the residual.
///
/// It is assumed that the extrapolation is computed on the same
/// mesh as the original function.
class Extrapolation
{
public:
/// Compute extrapolation w from v
static void extrapolate(Function& w, const Function& v);
private:
// Build data structures for unique dofs on patch of given cell
static void build_unique_dofs(std::set<uint>& unique_dofs,
std::map<uint, std::map<uint, uint> >& cell2dof2row,
const Cell& cell0,
const ufc::cell& c0,
const FunctionSpace& V);
// Compute unique dofs in given cell
static std::map<uint, uint> compute_unique_dofs(const Cell& cell, const ufc::cell& c,
const FunctionSpace& V,
uint& row, std::set<uint>& unique_dofs);
// Compute coefficients on given cell
static void compute_coefficients(std::vector<std::vector<double> >& coefficients,
const Function&v, const FunctionSpace& V,
const FunctionSpace& W, const Cell& cell0,
const ufc::cell& c0,
const std::vector<uint>& dofs,
uint& offset);
// Add equations for current cell
static void add_cell_equations(arma::Mat<double>& A,
arma::Col<double>& b,
const Cell& cell0,
const Cell& cell1,
const ufc::cell& c0,
const ufc::cell& c1,
const FunctionSpace& V,
const FunctionSpace& W,
const Function& v,
std::map<uint, uint>& dof2row);
// Average coefficients
static void average_coefficients(Function& w,
std::vector<std::vector<double> >& coefficients);
};
}
#endif
|