This file is indexed.

/usr/include/clang/AST/Stmt.h is in libclang-dev 3.0-6ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Stmt interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_STMT_H
#define LLVM_CLANG_AST_STMT_H

#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/StmtIterator.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/ASTContext.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include <string>

namespace llvm {
  class FoldingSetNodeID;
}

namespace clang {
  class ASTContext;
  class Expr;
  class Decl;
  class ParmVarDecl;
  class QualType;
  class IdentifierInfo;
  class SourceManager;
  class StringLiteral;
  class SwitchStmt;

  //===----------------------------------------------------------------------===//
  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
  //  references to children (to be compatible with StmtIterator).
  //===----------------------------------------------------------------------===//

  class Stmt;
  class Expr;

  class ExprIterator {
    Stmt** I;
  public:
    ExprIterator(Stmt** i) : I(i) {}
    ExprIterator() : I(0) {}
    ExprIterator& operator++() { ++I; return *this; }
    ExprIterator operator-(size_t i) { return I-i; }
    ExprIterator operator+(size_t i) { return I+i; }
    Expr* operator[](size_t idx);
    // FIXME: Verify that this will correctly return a signed distance.
    signed operator-(const ExprIterator& R) const { return I - R.I; }
    Expr* operator*() const;
    Expr* operator->() const;
    bool operator==(const ExprIterator& R) const { return I == R.I; }
    bool operator!=(const ExprIterator& R) const { return I != R.I; }
    bool operator>(const ExprIterator& R) const { return I > R.I; }
    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
  };

  class ConstExprIterator {
    const Stmt * const *I;
  public:
    ConstExprIterator(const Stmt * const *i) : I(i) {}
    ConstExprIterator() : I(0) {}
    ConstExprIterator& operator++() { ++I; return *this; }
    ConstExprIterator operator+(size_t i) const { return I+i; }
    ConstExprIterator operator-(size_t i) const { return I-i; }
    const Expr * operator[](size_t idx) const;
    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
    const Expr * operator*() const;
    const Expr * operator->() const;
    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
  };

//===----------------------------------------------------------------------===//
// AST classes for statements.
//===----------------------------------------------------------------------===//

/// Stmt - This represents one statement.
///
class Stmt {
public:
  enum StmtClass {
    NoStmtClass = 0,
#define STMT(CLASS, PARENT) CLASS##Class,
#define STMT_RANGE(BASE, FIRST, LAST) \
        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
#define ABSTRACT_STMT(STMT)
#include "clang/AST/StmtNodes.inc"
  };

  // Make vanilla 'new' and 'delete' illegal for Stmts.
protected:
  void* operator new(size_t bytes) throw() {
    llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
  }
  void operator delete(void* data) throw() {
    llvm_unreachable("Stmts cannot be released with regular 'delete'.");
  }

  class StmtBitfields {
    friend class Stmt;

    /// \brief The statement class.
    unsigned sClass : 8;
  };
  enum { NumStmtBits = 8 };

  class CompoundStmtBitfields {
    friend class CompoundStmt;
    unsigned : NumStmtBits;

    unsigned NumStmts : 32 - NumStmtBits;
  };

  class ExprBitfields {
    friend class Expr;
    friend class DeclRefExpr; // computeDependence
    friend class InitListExpr; // ctor
    friend class DesignatedInitExpr; // ctor
    friend class BlockDeclRefExpr; // ctor
    friend class ASTStmtReader; // deserialization
    friend class CXXNewExpr; // ctor
    friend class DependentScopeDeclRefExpr; // ctor
    friend class CXXConstructExpr; // ctor
    friend class CallExpr; // ctor
    friend class OffsetOfExpr; // ctor
    friend class ObjCMessageExpr; // ctor
    friend class ShuffleVectorExpr; // ctor
    friend class ParenListExpr; // ctor
    friend class CXXUnresolvedConstructExpr; // ctor
    friend class CXXDependentScopeMemberExpr; // ctor
    friend class OverloadExpr; // ctor
    friend class AtomicExpr; // ctor
    unsigned : NumStmtBits;

    unsigned ValueKind : 2;
    unsigned ObjectKind : 2;
    unsigned TypeDependent : 1;
    unsigned ValueDependent : 1;
    unsigned InstantiationDependent : 1;
    unsigned ContainsUnexpandedParameterPack : 1;
  };
  enum { NumExprBits = 16 };

  class DeclRefExprBitfields {
    friend class DeclRefExpr;
    friend class ASTStmtReader; // deserialization
    unsigned : NumExprBits;

    unsigned HasQualifier : 1;
    unsigned HasExplicitTemplateArgs : 1;
    unsigned HasFoundDecl : 1;
    unsigned HadMultipleCandidates : 1;
  };

  class CastExprBitfields {
    friend class CastExpr;
    unsigned : NumExprBits;

    unsigned Kind : 6;
    unsigned BasePathSize : 32 - 6 - NumExprBits;
  };

  class CallExprBitfields {
    friend class CallExpr;
    unsigned : NumExprBits;

    unsigned NumPreArgs : 1;
  };

  class ObjCIndirectCopyRestoreExprBitfields {
    friend class ObjCIndirectCopyRestoreExpr;
    unsigned : NumExprBits;

    unsigned ShouldCopy : 1;
  };

  union {
    // FIXME: this is wasteful on 64-bit platforms.
    void *Aligner;

    StmtBitfields StmtBits;
    CompoundStmtBitfields CompoundStmtBits;
    ExprBitfields ExprBits;
    DeclRefExprBitfields DeclRefExprBits;
    CastExprBitfields CastExprBits;
    CallExprBitfields CallExprBits;
    ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
  };

  friend class ASTStmtReader;

public:
  // Only allow allocation of Stmts using the allocator in ASTContext
  // or by doing a placement new.
  void* operator new(size_t bytes, ASTContext& C,
                     unsigned alignment = 8) throw() {
    return ::operator new(bytes, C, alignment);
  }

  void* operator new(size_t bytes, ASTContext* C,
                     unsigned alignment = 8) throw() {
    return ::operator new(bytes, *C, alignment);
  }

  void* operator new(size_t bytes, void* mem) throw() {
    return mem;
  }

  void operator delete(void*, ASTContext&, unsigned) throw() { }
  void operator delete(void*, ASTContext*, unsigned) throw() { }
  void operator delete(void*, std::size_t) throw() { }
  void operator delete(void*, void*) throw() { }

public:
  /// \brief A placeholder type used to construct an empty shell of a
  /// type, that will be filled in later (e.g., by some
  /// de-serialization).
  struct EmptyShell { };

protected:
  /// \brief Construct an empty statement.
  explicit Stmt(StmtClass SC, EmptyShell) {
    StmtBits.sClass = SC;
    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
  }

public:
  Stmt(StmtClass SC) {
    StmtBits.sClass = SC;
    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
  }

  StmtClass getStmtClass() const { 
    return static_cast<StmtClass>(StmtBits.sClass);
  }
  const char *getStmtClassName() const;

  /// SourceLocation tokens are not useful in isolation - they are low level
  /// value objects created/interpreted by SourceManager. We assume AST
  /// clients will have a pointer to the respective SourceManager.
  SourceRange getSourceRange() const;

  SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
  SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }

  // global temp stats (until we have a per-module visitor)
  static void addStmtClass(const StmtClass s);
  static bool CollectingStats(bool Enable = false);
  static void PrintStats();

  /// dump - This does a local dump of the specified AST fragment.  It dumps the
  /// specified node and a few nodes underneath it, but not the whole subtree.
  /// This is useful in a debugger.
  void dump() const;
  void dump(SourceManager &SM) const;
  void dump(raw_ostream &OS, SourceManager &SM) const;

  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
  void dumpAll() const;
  void dumpAll(SourceManager &SM) const;

  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
  /// back to its original source language syntax.
  void dumpPretty(ASTContext& Context) const;
  void printPretty(raw_ostream &OS, PrinterHelper *Helper,
                   const PrintingPolicy &Policy,
                   unsigned Indentation = 0) const {
    printPretty(OS, *(ASTContext*)0, Helper, Policy, Indentation);
  }
  void printPretty(raw_ostream &OS, ASTContext &Context,
                   PrinterHelper *Helper,
                   const PrintingPolicy &Policy,
                   unsigned Indentation = 0) const;

  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
  void viewAST() const;

  /// Skip past any implicit AST nodes which might surround this
  /// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
  Stmt *IgnoreImplicit();

  const Stmt *stripLabelLikeStatements() const;
  Stmt *stripLabelLikeStatements() {
    return const_cast<Stmt*>(
      const_cast<const Stmt*>(this)->stripLabelLikeStatements());
  }

  // Implement isa<T> support.
  static bool classof(const Stmt *) { return true; }

  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
  ///  contain implicit control-flow in the order their subexpressions
  ///  are evaluated.  This predicate returns true if this statement has
  ///  such implicit control-flow.  Such statements are also specially handled
  ///  within CFGs.
  bool hasImplicitControlFlow() const;

  /// Child Iterators: All subclasses must implement 'children'
  /// to permit easy iteration over the substatements/subexpessions of an
  /// AST node.  This permits easy iteration over all nodes in the AST.
  typedef StmtIterator       child_iterator;
  typedef ConstStmtIterator  const_child_iterator;

  typedef StmtRange          child_range;
  typedef ConstStmtRange     const_child_range;

  child_range children();
  const_child_range children() const {
    return const_cast<Stmt*>(this)->children();
  }

  child_iterator child_begin() { return children().first; }
  child_iterator child_end() { return children().second; }

  const_child_iterator child_begin() const { return children().first; }
  const_child_iterator child_end() const { return children().second; }

  /// \brief Produce a unique representation of the given statement.
  ///
  /// \brief ID once the profiling operation is complete, will contain
  /// the unique representation of the given statement.
  ///
  /// \brief Context the AST context in which the statement resides
  ///
  /// \brief Canonical whether the profile should be based on the canonical
  /// representation of this statement (e.g., where non-type template
  /// parameters are identified by index/level rather than their
  /// declaration pointers) or the exact representation of the statement as
  /// written in the source.
  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
               bool Canonical) const;
};

/// DeclStmt - Adaptor class for mixing declarations with statements and
/// expressions. For example, CompoundStmt mixes statements, expressions
/// and declarations (variables, types). Another example is ForStmt, where
/// the first statement can be an expression or a declaration.
///
class DeclStmt : public Stmt {
  DeclGroupRef DG;
  SourceLocation StartLoc, EndLoc;

public:
  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
                                    StartLoc(startLoc), EndLoc(endLoc) {}

  /// \brief Build an empty declaration statement.
  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }

  /// isSingleDecl - This method returns true if this DeclStmt refers
  /// to a single Decl.
  bool isSingleDecl() const {
    return DG.isSingleDecl();
  }

  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
  Decl *getSingleDecl() { return DG.getSingleDecl(); }

  const DeclGroupRef getDeclGroup() const { return DG; }
  DeclGroupRef getDeclGroup() { return DG; }
  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }

  SourceLocation getStartLoc() const { return StartLoc; }
  void setStartLoc(SourceLocation L) { StartLoc = L; }
  SourceLocation getEndLoc() const { return EndLoc; }
  void setEndLoc(SourceLocation L) { EndLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(StartLoc, EndLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DeclStmtClass;
  }
  static bool classof(const DeclStmt *) { return true; }

  // Iterators over subexpressions.
  child_range children() {
    return child_range(child_iterator(DG.begin(), DG.end()),
                       child_iterator(DG.end(), DG.end()));
  }

  typedef DeclGroupRef::iterator decl_iterator;
  typedef DeclGroupRef::const_iterator const_decl_iterator;

  decl_iterator decl_begin() { return DG.begin(); }
  decl_iterator decl_end() { return DG.end(); }
  const_decl_iterator decl_begin() const { return DG.begin(); }
  const_decl_iterator decl_end() const { return DG.end(); }
};

/// NullStmt - This is the null statement ";": C99 6.8.3p3.
///
class NullStmt : public Stmt {
  SourceLocation SemiLoc;

  /// \brief True if the null statement was preceded by an empty macro, e.g:
  /// @code
  ///   #define CALL(x)
  ///   CALL(0);
  /// @endcode
  bool HasLeadingEmptyMacro;
public:
  NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
    : Stmt(NullStmtClass), SemiLoc(L),
      HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}

  /// \brief Build an empty null statement.
  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
      HasLeadingEmptyMacro(false) { }

  SourceLocation getSemiLoc() const { return SemiLoc; }
  void setSemiLoc(SourceLocation L) { SemiLoc = L; }

  bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }

  SourceRange getSourceRange() const { return SourceRange(SemiLoc); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == NullStmtClass;
  }
  static bool classof(const NullStmt *) { return true; }

  child_range children() { return child_range(); }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// CompoundStmt - This represents a group of statements like { stmt stmt }.
///
class CompoundStmt : public Stmt {
  Stmt** Body;
  SourceLocation LBracLoc, RBracLoc;
public:
  CompoundStmt(ASTContext& C, Stmt **StmtStart, unsigned NumStmts,
               SourceLocation LB, SourceLocation RB)
  : Stmt(CompoundStmtClass), LBracLoc(LB), RBracLoc(RB) {
    CompoundStmtBits.NumStmts = NumStmts;
    assert(CompoundStmtBits.NumStmts == NumStmts &&
           "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");

    if (NumStmts == 0) {
      Body = 0;
      return;
    }

    Body = new (C) Stmt*[NumStmts];
    memcpy(Body, StmtStart, NumStmts * sizeof(*Body));
  }

  // \brief Build an empty compound statement.
  explicit CompoundStmt(EmptyShell Empty)
    : Stmt(CompoundStmtClass, Empty), Body(0) {
    CompoundStmtBits.NumStmts = 0;
  }

  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);

  bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
  unsigned size() const { return CompoundStmtBits.NumStmts; }

  typedef Stmt** body_iterator;
  body_iterator body_begin() { return Body; }
  body_iterator body_end() { return Body + size(); }
  Stmt *body_back() { return !body_empty() ? Body[size()-1] : 0; }
  
  void setLastStmt(Stmt *S) {
    assert(!body_empty() && "setLastStmt");
    Body[size()-1] = S;
  }

  typedef Stmt* const * const_body_iterator;
  const_body_iterator body_begin() const { return Body; }
  const_body_iterator body_end() const { return Body + size(); }
  const Stmt *body_back() const { return !body_empty() ? Body[size()-1] : 0; }

  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
  reverse_body_iterator body_rbegin() {
    return reverse_body_iterator(body_end());
  }
  reverse_body_iterator body_rend() {
    return reverse_body_iterator(body_begin());
  }

  typedef std::reverse_iterator<const_body_iterator>
          const_reverse_body_iterator;

  const_reverse_body_iterator body_rbegin() const {
    return const_reverse_body_iterator(body_end());
  }

  const_reverse_body_iterator body_rend() const {
    return const_reverse_body_iterator(body_begin());
  }

  SourceRange getSourceRange() const {
    return SourceRange(LBracLoc, RBracLoc);
  }

  SourceLocation getLBracLoc() const { return LBracLoc; }
  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
  SourceLocation getRBracLoc() const { return RBracLoc; }
  void setRBracLoc(SourceLocation L) { RBracLoc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CompoundStmtClass;
  }
  static bool classof(const CompoundStmt *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
  }
  
  const_child_range children() const {
    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
  }
};

// SwitchCase is the base class for CaseStmt and DefaultStmt,
class SwitchCase : public Stmt {
protected:
  // A pointer to the following CaseStmt or DefaultStmt class,
  // used by SwitchStmt.
  SwitchCase *NextSwitchCase;

  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}

public:
  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }

  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }

  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }

  Stmt *getSubStmt();
  const Stmt *getSubStmt() const {
    return const_cast<SwitchCase*>(this)->getSubStmt();
  }

  SourceRange getSourceRange() const { return SourceRange(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CaseStmtClass ||
           T->getStmtClass() == DefaultStmtClass;
  }
  static bool classof(const SwitchCase *) { return true; }
};

class CaseStmt : public SwitchCase {
  enum { LHS, RHS, SUBSTMT, END_EXPR };
  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
                             // GNU "case 1 ... 4" extension
  SourceLocation CaseLoc;
  SourceLocation EllipsisLoc;
  SourceLocation ColonLoc;
public:
  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
           SourceLocation ellipsisLoc, SourceLocation colonLoc)
    : SwitchCase(CaseStmtClass) {
    SubExprs[SUBSTMT] = 0;
    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
    CaseLoc = caseLoc;
    EllipsisLoc = ellipsisLoc;
    ColonLoc = colonLoc;
  }

  /// \brief Build an empty switch case statement.
  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }

  SourceLocation getCaseLoc() const { return CaseLoc; }
  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
  SourceLocation getColonLoc() const { return ColonLoc; }
  void setColonLoc(SourceLocation L) { ColonLoc = L; }

  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }

  const Expr *getLHS() const {
    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
  }
  const Expr *getRHS() const {
    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
  }
  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }

  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }


  SourceRange getSourceRange() const {
    // Handle deeply nested case statements with iteration instead of recursion.
    const CaseStmt *CS = this;
    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
      CS = CS2;

    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CaseStmtClass;
  }
  static bool classof(const CaseStmt *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
  }
};

class DefaultStmt : public SwitchCase {
  Stmt* SubStmt;
  SourceLocation DefaultLoc;
  SourceLocation ColonLoc;
public:
  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
    ColonLoc(CL) {}

  /// \brief Build an empty default statement.
  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }

  Stmt *getSubStmt() { return SubStmt; }
  const Stmt *getSubStmt() const { return SubStmt; }
  void setSubStmt(Stmt *S) { SubStmt = S; }

  SourceLocation getDefaultLoc() const { return DefaultLoc; }
  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
  SourceLocation getColonLoc() const { return ColonLoc; }
  void setColonLoc(SourceLocation L) { ColonLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DefaultStmtClass;
  }
  static bool classof(const DefaultStmt *) { return true; }

  // Iterators
  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
};

  
/// LabelStmt - Represents a label, which has a substatement.  For example:
///    foo: return;
///
class LabelStmt : public Stmt {
  LabelDecl *TheDecl;
  Stmt *SubStmt;
  SourceLocation IdentLoc;
public:
  LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
    : Stmt(LabelStmtClass), TheDecl(D), SubStmt(substmt), IdentLoc(IL) {
  }

  // \brief Build an empty label statement.
  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }

  SourceLocation getIdentLoc() const { return IdentLoc; }
  LabelDecl *getDecl() const { return TheDecl; }
  void setDecl(LabelDecl *D) { TheDecl = D; }
  const char *getName() const;
  Stmt *getSubStmt() { return SubStmt; }
  const Stmt *getSubStmt() const { return SubStmt; }
  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
  void setSubStmt(Stmt *SS) { SubStmt = SS; }

  SourceRange getSourceRange() const {
    return SourceRange(IdentLoc, SubStmt->getLocEnd());
  }
  child_range children() { return child_range(&SubStmt, &SubStmt+1); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == LabelStmtClass;
  }
  static bool classof(const LabelStmt *) { return true; }
};


/// IfStmt - This represents an if/then/else.
///
class IfStmt : public Stmt {
  enum { VAR, COND, THEN, ELSE, END_EXPR };
  Stmt* SubExprs[END_EXPR];

  SourceLocation IfLoc;
  SourceLocation ElseLoc;
  
public:
  IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond, 
         Stmt *then, SourceLocation EL = SourceLocation(), Stmt *elsev = 0);
  
  /// \brief Build an empty if/then/else statement
  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "if" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// if (int x = foo()) {
  ///   printf("x is %d", x);
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const;
  void setConditionVariable(ASTContext &C, VarDecl *V);
  
  /// If this IfStmt has a condition variable, return the faux DeclStmt
  /// associated with the creation of that condition variable.
  const DeclStmt *getConditionVariableDeclStmt() const {
    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
  }
  
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
  const Stmt *getThen() const { return SubExprs[THEN]; }
  void setThen(Stmt *S) { SubExprs[THEN] = S; }
  const Stmt *getElse() const { return SubExprs[ELSE]; }
  void setElse(Stmt *S) { SubExprs[ELSE] = S; }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  Stmt *getThen() { return SubExprs[THEN]; }
  Stmt *getElse() { return SubExprs[ELSE]; }

  SourceLocation getIfLoc() const { return IfLoc; }
  void setIfLoc(SourceLocation L) { IfLoc = L; }
  SourceLocation getElseLoc() const { return ElseLoc; }
  void setElseLoc(SourceLocation L) { ElseLoc = L; }

  SourceRange getSourceRange() const {
    if (SubExprs[ELSE])
      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
    else
      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
  }

  // Iterators over subexpressions.  The iterators will include iterating
  // over the initialization expression referenced by the condition variable.
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == IfStmtClass;
  }
  static bool classof(const IfStmt *) { return true; }
};

/// SwitchStmt - This represents a 'switch' stmt.
///
class SwitchStmt : public Stmt {
  enum { VAR, COND, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  // This points to a linked list of case and default statements.
  SwitchCase *FirstCase;
  SourceLocation SwitchLoc;

  /// If the SwitchStmt is a switch on an enum value, this records whether
  /// all the enum values were covered by CaseStmts.  This value is meant to
  /// be a hint for possible clients.
  unsigned AllEnumCasesCovered : 1;

public:
  SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond);

  /// \brief Build a empty switch statement.
  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "switch" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// switch (int x = foo()) {
  ///   case 0: break;
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const;
  void setConditionVariable(ASTContext &C, VarDecl *V);
  
  /// If this SwitchStmt has a condition variable, return the faux DeclStmt
  /// associated with the creation of that condition variable.
  const DeclStmt *getConditionVariableDeclStmt() const {
    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
  }

  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  const Stmt *getBody() const { return SubExprs[BODY]; }
  const SwitchCase *getSwitchCaseList() const { return FirstCase; }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }
  SwitchCase *getSwitchCaseList() { return FirstCase; }

  /// \brief Set the case list for this switch statement.
  ///
  /// The caller is responsible for incrementing the retain counts on
  /// all of the SwitchCase statements in this list.
  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }

  SourceLocation getSwitchLoc() const { return SwitchLoc; }
  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }

  void setBody(Stmt *S, SourceLocation SL) {
    SubExprs[BODY] = S;
    SwitchLoc = SL;
  }
  void addSwitchCase(SwitchCase *SC) {
    assert(!SC->getNextSwitchCase() && "case/default already added to a switch");
    SC->setNextSwitchCase(FirstCase);
    FirstCase = SC;
  }

  /// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
  /// switch over an enum value then all cases have been explicitly covered.
  void setAllEnumCasesCovered() {
    AllEnumCasesCovered = 1;
  }

  /// Returns true if the SwitchStmt is a switch of an enum value and all cases
  /// have been explicitly covered.
  bool isAllEnumCasesCovered() const {
    return (bool) AllEnumCasesCovered;
  }

  SourceRange getSourceRange() const {
    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
  }
  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SwitchStmtClass;
  }
  static bool classof(const SwitchStmt *) { return true; }
};


/// WhileStmt - This represents a 'while' stmt.
///
class WhileStmt : public Stmt {
  enum { VAR, COND, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  SourceLocation WhileLoc;
public:
  WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body, 
            SourceLocation WL);

  /// \brief Build an empty while statement.
  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "while" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// while (int x = random()) {
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const;
  void setConditionVariable(ASTContext &C, VarDecl *V);

  /// If this WhileStmt has a condition variable, return the faux DeclStmt
  /// associated with the creation of that condition variable.
  const DeclStmt *getConditionVariableDeclStmt() const {
    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
  }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  const Stmt *getBody() const { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getWhileLoc() const { return WhileLoc; }
  void setWhileLoc(SourceLocation L) { WhileLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == WhileStmtClass;
  }
  static bool classof(const WhileStmt *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
};

/// DoStmt - This represents a 'do/while' stmt.
///
class DoStmt : public Stmt {
  enum { BODY, COND, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  SourceLocation DoLoc;
  SourceLocation WhileLoc;
  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.

public:
  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
         SourceLocation RP)
    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
    SubExprs[BODY] = body;
  }

  /// \brief Build an empty do-while statement.
  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  const Stmt *getBody() const { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getDoLoc() const { return DoLoc; }
  void setDoLoc(SourceLocation L) { DoLoc = L; }
  SourceLocation getWhileLoc() const { return WhileLoc; }
  void setWhileLoc(SourceLocation L) { WhileLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(DoLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DoStmtClass;
  }
  static bool classof(const DoStmt *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
};


/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
/// the init/cond/inc parts of the ForStmt will be null if they were not
/// specified in the source.
///
class ForStmt : public Stmt {
  enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
  SourceLocation ForLoc;
  SourceLocation LParenLoc, RParenLoc;

public:
  ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc, 
          Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP);

  /// \brief Build an empty for statement.
  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }

  Stmt *getInit() { return SubExprs[INIT]; }
  
  /// \brief Retrieve the variable declared in this "for" statement, if any.
  ///
  /// In the following example, "y" is the condition variable.
  /// \code
  /// for (int x = random(); int y = mangle(x); ++x) {
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const;
  void setConditionVariable(ASTContext &C, VarDecl *V);
  
  /// If this ForStmt has a condition variable, return the faux DeclStmt
  /// associated with the creation of that condition variable.
  const DeclStmt *getConditionVariableDeclStmt() const {
    return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
  }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
  Stmt *getBody() { return SubExprs[BODY]; }

  const Stmt *getInit() const { return SubExprs[INIT]; }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
  const Stmt *getBody() const { return SubExprs[BODY]; }

  void setInit(Stmt *S) { SubExprs[INIT] = S; }
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getForLoc() const { return ForLoc; }
  void setForLoc(SourceLocation L) { ForLoc = L; }
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ForStmtClass;
  }
  static bool classof(const ForStmt *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
};

/// GotoStmt - This represents a direct goto.
///
class GotoStmt : public Stmt {
  LabelDecl *Label;
  SourceLocation GotoLoc;
  SourceLocation LabelLoc;
public:
  GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}

  /// \brief Build an empty goto statement.
  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }

  LabelDecl *getLabel() const { return Label; }
  void setLabel(LabelDecl *D) { Label = D; }

  SourceLocation getGotoLoc() const { return GotoLoc; }
  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
  SourceLocation getLabelLoc() const { return LabelLoc; }
  void setLabelLoc(SourceLocation L) { LabelLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(GotoLoc, LabelLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == GotoStmtClass;
  }
  static bool classof(const GotoStmt *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};

/// IndirectGotoStmt - This represents an indirect goto.
///
class IndirectGotoStmt : public Stmt {
  SourceLocation GotoLoc;
  SourceLocation StarLoc;
  Stmt *Target;
public:
  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
                   Expr *target)
    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
      Target((Stmt*)target) {}

  /// \brief Build an empty indirect goto statement.
  explicit IndirectGotoStmt(EmptyShell Empty)
    : Stmt(IndirectGotoStmtClass, Empty) { }

  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
  SourceLocation getGotoLoc() const { return GotoLoc; }
  void setStarLoc(SourceLocation L) { StarLoc = L; }
  SourceLocation getStarLoc() const { return StarLoc; }

  Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
  const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }

  /// getConstantTarget - Returns the fixed target of this indirect
  /// goto, if one exists.
  LabelDecl *getConstantTarget();
  const LabelDecl *getConstantTarget() const {
    return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
  }

  SourceRange getSourceRange() const {
    return SourceRange(GotoLoc, Target->getLocEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == IndirectGotoStmtClass;
  }
  static bool classof(const IndirectGotoStmt *) { return true; }

  // Iterators
  child_range children() { return child_range(&Target, &Target+1); }
};


/// ContinueStmt - This represents a continue.
///
class ContinueStmt : public Stmt {
  SourceLocation ContinueLoc;
public:
  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}

  /// \brief Build an empty continue statement.
  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }

  SourceLocation getContinueLoc() const { return ContinueLoc; }
  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(ContinueLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ContinueStmtClass;
  }
  static bool classof(const ContinueStmt *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};

/// BreakStmt - This represents a break.
///
class BreakStmt : public Stmt {
  SourceLocation BreakLoc;
public:
  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}

  /// \brief Build an empty break statement.
  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }

  SourceLocation getBreakLoc() const { return BreakLoc; }
  void setBreakLoc(SourceLocation L) { BreakLoc = L; }

  SourceRange getSourceRange() const { return SourceRange(BreakLoc); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BreakStmtClass;
  }
  static bool classof(const BreakStmt *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};


/// ReturnStmt - This represents a return, optionally of an expression:
///   return;
///   return 4;
///
/// Note that GCC allows return with no argument in a function declared to
/// return a value, and it allows returning a value in functions declared to
/// return void.  We explicitly model this in the AST, which means you can't
/// depend on the return type of the function and the presence of an argument.
///
class ReturnStmt : public Stmt {
  Stmt *RetExpr;
  SourceLocation RetLoc;
  const VarDecl *NRVOCandidate;
  
public:
  ReturnStmt(SourceLocation RL)
    : Stmt(ReturnStmtClass), RetExpr(0), RetLoc(RL), NRVOCandidate(0) { }

  ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
    : Stmt(ReturnStmtClass), RetExpr((Stmt*) E), RetLoc(RL),
      NRVOCandidate(NRVOCandidate) {}

  /// \brief Build an empty return expression.
  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }

  const Expr *getRetValue() const;
  Expr *getRetValue();
  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }

  SourceLocation getReturnLoc() const { return RetLoc; }
  void setReturnLoc(SourceLocation L) { RetLoc = L; }

  /// \brief Retrieve the variable that might be used for the named return
  /// value optimization.
  ///
  /// The optimization itself can only be performed if the variable is
  /// also marked as an NRVO object.
  const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
  void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
  
  SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ReturnStmtClass;
  }
  static bool classof(const ReturnStmt *) { return true; }

  // Iterators
  child_range children() {
    if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
    return child_range();
  }
};

/// AsmStmt - This represents a GNU inline-assembly statement extension.
///
class AsmStmt : public Stmt {
  SourceLocation AsmLoc, RParenLoc;
  StringLiteral *AsmStr;

  bool IsSimple;
  bool IsVolatile;
  bool MSAsm;

  unsigned NumOutputs;
  unsigned NumInputs;
  unsigned NumClobbers;

  // FIXME: If we wanted to, we could allocate all of these in one big array.
  IdentifierInfo **Names;
  StringLiteral **Constraints;
  Stmt **Exprs;
  StringLiteral **Clobbers;
  
public:
  AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile, 
          bool msasm, unsigned numoutputs, unsigned numinputs,
          IdentifierInfo **names, StringLiteral **constraints,
          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
          StringLiteral **clobbers, SourceLocation rparenloc);

  /// \brief Build an empty inline-assembly statement.
  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty), 
    Names(0), Constraints(0), Exprs(0), Clobbers(0) { }

  SourceLocation getAsmLoc() const { return AsmLoc; }
  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  bool isVolatile() const { return IsVolatile; }
  void setVolatile(bool V) { IsVolatile = V; }
  bool isSimple() const { return IsSimple; }
  void setSimple(bool V) { IsSimple = V; }
  bool isMSAsm() const { return MSAsm; }
  void setMSAsm(bool V) { MSAsm = V; }

  //===--- Asm String Analysis ---===//

  const StringLiteral *getAsmString() const { return AsmStr; }
  StringLiteral *getAsmString() { return AsmStr; }
  void setAsmString(StringLiteral *E) { AsmStr = E; }

  /// AsmStringPiece - this is part of a decomposed asm string specification
  /// (for use with the AnalyzeAsmString function below).  An asm string is
  /// considered to be a concatenation of these parts.
  class AsmStringPiece {
  public:
    enum Kind {
      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
      Operand  // Operand reference, with optional modifier %c4.
    };
  private:
    Kind MyKind;
    std::string Str;
    unsigned OperandNo;
  public:
    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
    AsmStringPiece(unsigned OpNo, char Modifier)
      : MyKind(Operand), Str(), OperandNo(OpNo) {
      Str += Modifier;
    }

    bool isString() const { return MyKind == String; }
    bool isOperand() const { return MyKind == Operand; }

    const std::string &getString() const {
      assert(isString());
      return Str;
    }

    unsigned getOperandNo() const {
      assert(isOperand());
      return OperandNo;
    }

    /// getModifier - Get the modifier for this operand, if present.  This
    /// returns '\0' if there was no modifier.
    char getModifier() const {
      assert(isOperand());
      return Str[0];
    }
  };

  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
  /// it into pieces.  If the asm string is erroneous, emit errors and return
  /// true, otherwise return false.  This handles canonicalization and
  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
  unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
                            ASTContext &C, unsigned &DiagOffs) const;


  //===--- Output operands ---===//

  unsigned getNumOutputs() const { return NumOutputs; }

  IdentifierInfo *getOutputIdentifier(unsigned i) const {
    return Names[i];
  }

  StringRef getOutputName(unsigned i) const {
    if (IdentifierInfo *II = getOutputIdentifier(i))
      return II->getName();
    
    return StringRef();
  }

  /// getOutputConstraint - Return the constraint string for the specified
  /// output operand.  All output constraints are known to be non-empty (either
  /// '=' or '+').
  StringRef getOutputConstraint(unsigned i) const;

  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
    return Constraints[i];
  }
  StringLiteral *getOutputConstraintLiteral(unsigned i) {
    return Constraints[i];
  }

  Expr *getOutputExpr(unsigned i);

  const Expr *getOutputExpr(unsigned i) const {
    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
  }

  /// isOutputPlusConstraint - Return true if the specified output constraint
  /// is a "+" constraint (which is both an input and an output) or false if it
  /// is an "=" constraint (just an output).
  bool isOutputPlusConstraint(unsigned i) const {
    return getOutputConstraint(i)[0] == '+';
  }

  /// getNumPlusOperands - Return the number of output operands that have a "+"
  /// constraint.
  unsigned getNumPlusOperands() const;

  //===--- Input operands ---===//

  unsigned getNumInputs() const { return NumInputs; }

  IdentifierInfo *getInputIdentifier(unsigned i) const {
    return Names[i + NumOutputs];
  }

  StringRef getInputName(unsigned i) const {
    if (IdentifierInfo *II = getInputIdentifier(i))
      return II->getName();

    return StringRef();
  }

  /// getInputConstraint - Return the specified input constraint.  Unlike output
  /// constraints, these can be empty.
  StringRef getInputConstraint(unsigned i) const;

  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
    return Constraints[i + NumOutputs];
  }
  StringLiteral *getInputConstraintLiteral(unsigned i) {
    return Constraints[i + NumOutputs];
  }

  Expr *getInputExpr(unsigned i);
  void setInputExpr(unsigned i, Expr *E);
  
  const Expr *getInputExpr(unsigned i) const {
    return const_cast<AsmStmt*>(this)->getInputExpr(i);
  }

  void setOutputsAndInputsAndClobbers(ASTContext &C,
                                      IdentifierInfo **Names,
                                      StringLiteral **Constraints,
                                      Stmt **Exprs,
                                      unsigned NumOutputs,
                                      unsigned NumInputs,                                      
                                      StringLiteral **Clobbers,
                                      unsigned NumClobbers);

  //===--- Other ---===//

  /// getNamedOperand - Given a symbolic operand reference like %[foo],
  /// translate this into a numeric value needed to reference the same operand.
  /// This returns -1 if the operand name is invalid.
  int getNamedOperand(StringRef SymbolicName) const;

  unsigned getNumClobbers() const { return NumClobbers; }
  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }

  SourceRange getSourceRange() const {
    return SourceRange(AsmLoc, RParenLoc);
  }

  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
  static bool classof(const AsmStmt *) { return true; }

  // Input expr iterators.

  typedef ExprIterator inputs_iterator;
  typedef ConstExprIterator const_inputs_iterator;

  inputs_iterator begin_inputs() {
    return &Exprs[0] + NumOutputs;
  }

  inputs_iterator end_inputs() {
    return &Exprs[0] + NumOutputs + NumInputs;
  }

  const_inputs_iterator begin_inputs() const {
    return &Exprs[0] + NumOutputs;
  }

  const_inputs_iterator end_inputs() const {
    return &Exprs[0] + NumOutputs + NumInputs;
  }

  // Output expr iterators.

  typedef ExprIterator outputs_iterator;
  typedef ConstExprIterator const_outputs_iterator;

  outputs_iterator begin_outputs() {
    return &Exprs[0];
  }
  outputs_iterator end_outputs() {
    return &Exprs[0] + NumOutputs;
  }

  const_outputs_iterator begin_outputs() const {
    return &Exprs[0];
  }
  const_outputs_iterator end_outputs() const {
    return &Exprs[0] + NumOutputs;
  }

  child_range children() {
    return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
  }
};

class SEHExceptStmt : public Stmt {
  SourceLocation  Loc;
  Stmt           *Children[2];

  enum { FILTER_EXPR, BLOCK };

  SEHExceptStmt(SourceLocation Loc,
                Expr *FilterExpr,
                Stmt *Block);

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }

public:
  static SEHExceptStmt* Create(ASTContext &C,
                               SourceLocation ExceptLoc,
                               Expr *FilterExpr,
                               Stmt *Block);
  SourceRange getSourceRange() const {
    return SourceRange(getExceptLoc(), getEndLoc());
  }

  SourceLocation getExceptLoc() const { return Loc; }
  SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }

  Expr *getFilterExpr() const { return reinterpret_cast<Expr*>(Children[FILTER_EXPR]); }
  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Children[BLOCK]); }

  child_range children() {
    return child_range(Children,Children+2);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SEHExceptStmtClass;
  }

  static bool classof(SEHExceptStmt *) { return true; }

};

class SEHFinallyStmt : public Stmt {
  SourceLocation  Loc;
  Stmt           *Block;

  SEHFinallyStmt(SourceLocation Loc,
                 Stmt *Block);

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }

public:
  static SEHFinallyStmt* Create(ASTContext &C,
                                SourceLocation FinallyLoc,
                                Stmt *Block);

  SourceRange getSourceRange() const {
    return SourceRange(getFinallyLoc(), getEndLoc());
  }

  SourceLocation getFinallyLoc() const { return Loc; }
  SourceLocation getEndLoc() const { return Block->getLocEnd(); }

  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Block); }

  child_range children() {
    return child_range(&Block,&Block+1);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SEHFinallyStmtClass;
  }

  static bool classof(SEHFinallyStmt *) { return true; }

};

class SEHTryStmt : public Stmt {
  bool            IsCXXTry;
  SourceLocation  TryLoc;
  Stmt           *Children[2];

  enum { TRY = 0, HANDLER = 1 };

  SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
             SourceLocation TryLoc,
             Stmt *TryBlock,
             Stmt *Handler);

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }

public:
  static SEHTryStmt* Create(ASTContext &C,
                            bool isCXXTry,
                            SourceLocation TryLoc,
                            Stmt *TryBlock,
                            Stmt *Handler);

  SourceRange getSourceRange() const {
    return SourceRange(getTryLoc(), getEndLoc());
  }

  SourceLocation getTryLoc() const { return TryLoc; }
  SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }

  bool getIsCXXTry() const { return IsCXXTry; }
  CompoundStmt* getTryBlock() const { return llvm::cast<CompoundStmt>(Children[TRY]); }
  Stmt *getHandler() const { return Children[HANDLER]; }

  /// Returns 0 if not defined
  SEHExceptStmt  *getExceptHandler() const;
  SEHFinallyStmt *getFinallyHandler() const;

  child_range children() {
    return child_range(Children,Children+2);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SEHTryStmtClass;
  }

  static bool classof(SEHTryStmt *) { return true; }

};

}  // end namespace clang

#endif