This file is indexed.

/usr/include/clang/AST/ExprCXX.h is in libclang-dev 3.0-6ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H

#include "clang/Basic/TypeTraits.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/AST/Expr.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/TemplateBase.h"

namespace clang {

class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXTemporary;
class TemplateArgumentListInfo;

//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//

/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
  /// \brief The overloaded operator.
  OverloadedOperatorKind Operator;

public:
  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
                      Expr **args, unsigned numargs, QualType t,
                      ExprValueKind VK, SourceLocation operatorloc)
    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
               operatorloc),
      Operator(Op) {}
  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
    CallExpr(C, CXXOperatorCallExprClass, Empty) { }


  /// getOperator - Returns the kind of overloaded operator that this
  /// expression refers to.
  OverloadedOperatorKind getOperator() const { return Operator; }
  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }

  /// getOperatorLoc - Returns the location of the operator symbol in
  /// the expression. When @c getOperator()==OO_Call, this is the
  /// location of the right parentheses; when @c
  /// getOperator()==OO_Subscript, this is the location of the right
  /// bracket.
  SourceLocation getOperatorLoc() const { return getRParenLoc(); }

  SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXOperatorCallExprClass;
  }
  static bool classof(const CXXOperatorCallExpr *) { return true; }
};

/// CXXMemberCallExpr - Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
                    QualType t, ExprValueKind VK, SourceLocation RP)
    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}

  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
    : CallExpr(C, CXXMemberCallExprClass, Empty) { }

  /// getImplicitObjectArgument - Retrieves the implicit object
  /// argument for the member call. For example, in "x.f(5)", this
  /// operation would return "x".
  Expr *getImplicitObjectArgument() const;
  
  /// Retrieves the declaration of the called method.
  CXXMethodDecl *getMethodDecl() const;

  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
  /// the implicit object argument. Note that this is may not be the same
  /// declaration as that of the class context of the CXXMethodDecl which this
  /// function is calling.
  /// FIXME: Returns 0 for member pointer call exprs.
  CXXRecordDecl *getRecordDecl();

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXMemberCallExprClass;
  }
  static bool classof(const CXXMemberCallExpr *) { return true; }
};

/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
class CUDAKernelCallExpr : public CallExpr {
private:
  enum { CONFIG, END_PREARG };

public:
  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
                     Expr **args, unsigned numargs, QualType t,
                     ExprValueKind VK, SourceLocation RP)
    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
               RP) {
    setConfig(Config);
  }

  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }

  const CallExpr *getConfig() const {
    return cast_or_null<CallExpr>(getPreArg(CONFIG));
  }
  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CUDAKernelCallExprClass;
  }
  static bool classof(const CUDAKernelCallExpr *) { return true; }
};

/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
/// const_cast.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts, e.g., CXXStaticCastExpr,
/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
  SourceLocation Loc; // the location of the casting op
  SourceLocation RParenLoc; // the location of the right parenthesis
  
protected:
  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
                   CastKind kind, Expr *op, unsigned PathSize,
                   TypeSourceInfo *writtenTy, SourceLocation l,
                   SourceLocation RParenLoc)
    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
      RParenLoc(RParenLoc) {}

  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
    : ExplicitCastExpr(SC, Shell, PathSize) { }

  friend class ASTStmtReader;
  
public:
  const char *getCastName() const;

  /// \brief Retrieve the location of the cast operator keyword, e.g.,
  /// "static_cast".
  SourceLocation getOperatorLoc() const { return Loc; }

  /// \brief Retrieve the location of the closing parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  
  SourceRange getSourceRange() const {
    return SourceRange(Loc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    switch (T->getStmtClass()) {
    case CXXStaticCastExprClass:
    case CXXDynamicCastExprClass:
    case CXXReinterpretCastExprClass:
    case CXXConstCastExprClass:
      return true;
    default:
      return false;
    }
  }
  static bool classof(const CXXNamedCastExpr *) { return true; }
};

/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// @c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
                    unsigned pathSize, TypeSourceInfo *writtenTy,
                    SourceLocation l, SourceLocation RParenLoc)
    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
                       writtenTy, l, RParenLoc) {}

  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }

public:
  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
                                   ExprValueKind VK, CastKind K, Expr *Op,
                                   const CXXCastPath *Path,
                                   TypeSourceInfo *Written, SourceLocation L, 
                                   SourceLocation RParenLoc);
  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
                                        unsigned PathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXStaticCastExprClass;
  }
  static bool classof(const CXXStaticCastExpr *) { return true; }
};

/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
/// determine how to perform the type cast.
///
/// This expression node represents a dynamic cast, e.g.,
/// @c dynamic_cast<Derived*>(BasePtr).
class CXXDynamicCastExpr : public CXXNamedCastExpr {
  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
                     SourceLocation l, SourceLocation RParenLoc)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
                       writtenTy, l, RParenLoc) {}

  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }

public:
  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
                                    ExprValueKind VK, CastKind Kind, Expr *Op,
                                    const CXXCastPath *Path,
                                    TypeSourceInfo *Written, SourceLocation L, 
                                    SourceLocation RParenLoc);
  
  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
                                         unsigned pathSize);

  bool isAlwaysNull() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDynamicCastExprClass;
  }
  static bool classof(const CXXDynamicCastExpr *) { return true; }
};

/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
/// [expr.reinterpret.cast]), which provides a differently-typed view
/// of a value but performs no actual work at run time.
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
                         Expr *op, unsigned pathSize,
                         TypeSourceInfo *writtenTy, SourceLocation l, 
                         SourceLocation RParenLoc)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
                       pathSize, writtenTy, l, RParenLoc) {}

  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }

public:
  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
                                        ExprValueKind VK, CastKind Kind,
                                        Expr *Op, const CXXCastPath *Path,
                                 TypeSourceInfo *WrittenTy, SourceLocation L, 
                                        SourceLocation RParenLoc);
  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
                                             unsigned pathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXReinterpretCastExprClass;
  }
  static bool classof(const CXXReinterpretCastExpr *) { return true; }
};

/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
/// which can remove type qualifiers but does not change the underlying value.
///
/// This expression node represents a const cast, e.g.,
/// @c const_cast<char*>(PtrToConstChar).
class CXXConstCastExpr : public CXXNamedCastExpr {
  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
                   TypeSourceInfo *writtenTy, SourceLocation l, 
                   SourceLocation RParenLoc)
    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 
                       0, writtenTy, l, RParenLoc) {}

  explicit CXXConstCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }

public:
  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
                                  ExprValueKind VK, Expr *Op,
                                  TypeSourceInfo *WrittenTy, SourceLocation L, 
                                  SourceLocation RParenLoc);
  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstCastExprClass;
  }
  static bool classof(const CXXConstCastExpr *) { return true; }
};

/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
///
class CXXBoolLiteralExpr : public Expr {
  bool Value;
  SourceLocation Loc;
public:
  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Value(val), Loc(l) {}

  explicit CXXBoolLiteralExpr(EmptyShell Empty)
    : Expr(CXXBoolLiteralExprClass, Empty) { }

  bool getValue() const { return Value; }
  void setValue(bool V) { Value = V; }

  SourceRange getSourceRange() const { return SourceRange(Loc); }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBoolLiteralExprClass;
  }
  static bool classof(const CXXBoolLiteralExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};

/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
class CXXNullPtrLiteralExpr : public Expr {
  SourceLocation Loc;
public:
  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Loc(l) {}

  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
    : Expr(CXXNullPtrLiteralExprClass, Empty) { }

  SourceRange getSourceRange() const { return SourceRange(Loc); }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
  }
  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }

  child_range children() { return child_range(); }
};

/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
/// the type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like @c typeid(int) or @c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  SourceRange Range;

public:
  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
           false,
           // typeid is value-dependent if the type or expression are dependent
           Operand->getType()->isDependentType(),
           Operand->getType()->isInstantiationDependentType(),
           Operand->getType()->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }
  
  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
           false,
        // typeid is value-dependent if the type or expression are dependent
           Operand->isTypeDependent() || Operand->isValueDependent(),
           Operand->isInstantiationDependent(),
           Operand->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }

  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
    : Expr(CXXTypeidExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)0;
    else
      Operand = (TypeSourceInfo*)0;
  }
  
  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
  
  /// \brief Retrieves the type operand of this typeid() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand() const;

  /// \brief Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    Operand = TSI;
  }
  
  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }
  
  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    Operand = E;
  }
  
  SourceRange getSourceRange() const { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTypeidExprClass;
  }
  static bool classof(const CXXTypeidExpr *) { return true; }

  // Iterators
  child_range children() {
    if (isTypeOperand()) return child_range();
    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
    return child_range(begin, begin + 1);
  }
};

/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
/// the _GUID that corresponds to the supplied type or expression.
///
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
class CXXUuidofExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  SourceRange Range;

public:
  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
           false, Operand->getType()->isDependentType(),
           Operand->getType()->isInstantiationDependentType(),
           Operand->getType()->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }
  
  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
           false, Operand->isTypeDependent(),
           Operand->isInstantiationDependent(),
           Operand->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }

  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
    : Expr(CXXUuidofExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)0;
    else
      Operand = (TypeSourceInfo*)0;
  }
  
  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
  
  /// \brief Retrieves the type operand of this __uuidof() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand() const;

  /// \brief Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    Operand = TSI;
  }
  
  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }
  
  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    Operand = E;
  }

  SourceRange getSourceRange() const { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUuidofExprClass;
  }
  static bool classof(const CXXUuidofExpr *) { return true; }

  // Iterators
  child_range children() {
    if (isTypeOperand()) return child_range();
    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
    return child_range(begin, begin + 1);
  }
};

/// CXXThisExpr - Represents the "this" expression in C++, which is a
/// pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// @code
/// class Foo {
/// public:
///   void bar();
///   void test() { this->bar(); }
/// };
/// @endcode
class CXXThisExpr : public Expr {
  SourceLocation Loc;
  bool Implicit : 1;
  
public:
  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
           // 'this' is type-dependent if the class type of the enclosing
           // member function is dependent (C++ [temp.dep.expr]p2)
           Type->isDependentType(), Type->isDependentType(),
           Type->isInstantiationDependentType(),
           /*ContainsUnexpandedParameterPack=*/false),
      Loc(L), Implicit(isImplicit) { }

  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  SourceRange getSourceRange() const { return SourceRange(Loc); }

  bool isImplicit() const { return Implicit; }
  void setImplicit(bool I) { Implicit = I; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThisExprClass;
  }
  static bool classof(const CXXThisExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};

///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
///  'throw' and 'throw' assignment-expression.  When
///  assignment-expression isn't present, Op will be null.
///
class CXXThrowExpr : public Expr {
  Stmt *Op;
  SourceLocation ThrowLoc;
  /// \brief Whether the thrown variable (if any) is in scope.
  unsigned IsThrownVariableInScope : 1;
  
  friend class ASTStmtReader;
  
public:
  // Ty is the void type which is used as the result type of the
  // exepression.  The l is the location of the throw keyword.  expr
  // can by null, if the optional expression to throw isn't present.
  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
               bool IsThrownVariableInScope) :
    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         expr && expr->isInstantiationDependent(),
         expr && expr->containsUnexpandedParameterPack()),
    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}

  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }

  SourceLocation getThrowLoc() const { return ThrowLoc; }

  /// \brief Determines whether the variable thrown by this expression (if any!)
  /// is within the innermost try block.
  ///
  /// This information is required to determine whether the NRVO can apply to
  /// this variable.
  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
  
  SourceRange getSourceRange() const {
    if (getSubExpr() == 0)
      return SourceRange(ThrowLoc, ThrowLoc);
    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThrowExprClass;
  }
  static bool classof(const CXXThrowExpr *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&Op, Op ? &Op+1 : &Op);
  }
};

/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
/// function call argument that was created from the corresponding
/// parameter's default argument, when the call did not explicitly
/// supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
  /// \brief The parameter whose default is being used.
  ///
  /// When the bit is set, the subexpression is stored after the 
  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
  /// actual default expression is the subexpression.
  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;

  /// \brief The location where the default argument expression was used.
  SourceLocation Loc;
  
  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
    : Expr(SC, 
           param->hasUnparsedDefaultArg()
             ? param->getType().getNonReferenceType()
             : param->getDefaultArg()->getType(),
           param->getDefaultArg()->getValueKind(),
           param->getDefaultArg()->getObjectKind(), false, false, false, false),
      Param(param, false), Loc(Loc) { }

  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param, 
                    Expr *SubExpr)
    : Expr(SC, SubExpr->getType(),
           SubExpr->getValueKind(), SubExpr->getObjectKind(),
           false, false, false, false), 
      Param(param, true), Loc(Loc) {
    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
  }
  
public:
  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}

  
  // Param is the parameter whose default argument is used by this
  // expression.
  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
                                   ParmVarDecl *Param) {
    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
  }

  // Param is the parameter whose default argument is used by this
  // expression, and SubExpr is the expression that will actually be used.
  static CXXDefaultArgExpr *Create(ASTContext &C, 
                                   SourceLocation Loc,
                                   ParmVarDecl *Param, 
                                   Expr *SubExpr);
  
  // Retrieve the parameter that the argument was created from.
  const ParmVarDecl *getParam() const { return Param.getPointer(); }
  ParmVarDecl *getParam() { return Param.getPointer(); }
  
  // Retrieve the actual argument to the function call.
  const Expr *getExpr() const { 
    if (Param.getInt())
      return *reinterpret_cast<Expr const * const*> (this + 1);
    return getParam()->getDefaultArg(); 
  }
  Expr *getExpr() { 
    if (Param.getInt())
      return *reinterpret_cast<Expr **> (this + 1);
    return getParam()->getDefaultArg(); 
  }

  /// \brief Retrieve the location where this default argument was actually 
  /// used.
  SourceLocation getUsedLocation() const { return Loc; }
  
  SourceRange getSourceRange() const {
    // Default argument expressions have no representation in the
    // source, so they have an empty source range.
    return SourceRange();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultArgExprClass;
  }
  static bool classof(const CXXDefaultArgExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// CXXTemporary - Represents a C++ temporary.
class CXXTemporary {
  /// Destructor - The destructor that needs to be called.
  const CXXDestructorDecl *Destructor;

  CXXTemporary(const CXXDestructorDecl *destructor)
    : Destructor(destructor) { }

public:
  static CXXTemporary *Create(ASTContext &C,
                              const CXXDestructorDecl *Destructor);

  const CXXDestructorDecl *getDestructor() const { return Destructor; }
};

/// \brief Represents binding an expression to a temporary.
///
/// This ensures the destructor is called for the temporary. It should only be
/// needed for non-POD, non-trivially destructable class types. For example:
///
/// \code
///   struct S {
///     S() { }  // User defined constructor makes S non-POD.
///     ~S() { } // User defined destructor makes it non-trivial.
///   };
///   void test() {
///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
///   }
/// \endcode
class CXXBindTemporaryExpr : public Expr {
  CXXTemporary *Temp;

  Stmt *SubExpr;

  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(), 
          SubExpr->isValueDependent(),
          SubExpr->isInstantiationDependent(),
          SubExpr->containsUnexpandedParameterPack()),
     Temp(temp), SubExpr(SubExpr) { }

public:
  CXXBindTemporaryExpr(EmptyShell Empty)
    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
  
  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
                                      Expr* SubExpr);

  CXXTemporary *getTemporary() { return Temp; }
  const CXXTemporary *getTemporary() const { return Temp; }
  void setTemporary(CXXTemporary *T) { Temp = T; }

  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  SourceRange getSourceRange() const { 
    return SubExpr->getSourceRange();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBindTemporaryExprClass;
  }
  static bool classof(const CXXBindTemporaryExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};

/// CXXConstructExpr - Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
public:
  enum ConstructionKind {
    CK_Complete,
    CK_NonVirtualBase,
    CK_VirtualBase,
    CK_Delegating
  };
    
private:
  CXXConstructorDecl *Constructor;

  SourceLocation Loc;
  SourceRange ParenRange;
  unsigned NumArgs : 16;
  bool Elidable : 1;
  bool HadMultipleCandidates : 1;
  bool ZeroInitialization : 1;
  unsigned ConstructKind : 2;
  Stmt **Args;

protected:
  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
                   SourceLocation Loc,
                   CXXConstructorDecl *d, bool elidable,
                   Expr **args, unsigned numargs,
                   bool HadMultipleCandidates,
                   bool ZeroInitialization = false,
                   ConstructionKind ConstructKind = CK_Complete,
                   SourceRange ParenRange = SourceRange());

  /// \brief Construct an empty C++ construction expression.
  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(0),
      HadMultipleCandidates(false), ZeroInitialization(0),
      ConstructKind(0), Args(0) { }

public:
  /// \brief Construct an empty C++ construction expression.
  explicit CXXConstructExpr(EmptyShell Empty)
    : Expr(CXXConstructExprClass, Empty), Constructor(0),
      NumArgs(0), Elidable(0), HadMultipleCandidates(false),
      ZeroInitialization(0), ConstructKind(0), Args(0) { }

  static CXXConstructExpr *Create(ASTContext &C, QualType T,
                                  SourceLocation Loc,
                                  CXXConstructorDecl *D, bool Elidable,
                                  Expr **Args, unsigned NumArgs,
                                  bool HadMultipleCandidates,
                                  bool ZeroInitialization = false,
                                  ConstructionKind ConstructKind = CK_Complete,
                                  SourceRange ParenRange = SourceRange());


  CXXConstructorDecl* getConstructor() const { return Constructor; }
  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
  
  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
  
  /// \brief Whether this construction is elidable.
  bool isElidable() const { return Elidable; }
  void setElidable(bool E) { Elidable = E; }

  /// \brief Whether the referred constructor was resolved from
  /// an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }

  /// \brief Whether this construction first requires
  /// zero-initialization before the initializer is called.
  bool requiresZeroInitialization() const { return ZeroInitialization; }
  void setRequiresZeroInitialization(bool ZeroInit) {
    ZeroInitialization = ZeroInit;
  }
  
  /// \brief Determines whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  ConstructionKind getConstructionKind() const {
    return (ConstructionKind)ConstructKind;
  }
  void setConstructionKind(ConstructionKind CK) { 
    ConstructKind = CK;
  }
  
  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;

  arg_iterator arg_begin() { return Args; }
  arg_iterator arg_end() { return Args + NumArgs; }
  const_arg_iterator arg_begin() const { return Args; }
  const_arg_iterator arg_end() const { return Args + NumArgs; }

  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
  unsigned getNumArgs() const { return NumArgs; }

  /// getArg - Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }

  /// setArg - Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < NumArgs && "Arg access out of range!");
    Args[Arg] = ArgExpr;
  }

  SourceRange getSourceRange() const;
  SourceRange getParenRange() const { return ParenRange; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstructExprClass ||
      T->getStmtClass() == CXXTemporaryObjectExprClass;
  }
  static bool classof(const CXXConstructExpr *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&Args[0], &Args[0]+NumArgs);
  }

  friend class ASTStmtReader;
};

/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
/// x = int(0.5);
class CXXFunctionalCastExpr : public ExplicitCastExpr {
  SourceLocation TyBeginLoc;
  SourceLocation RParenLoc;

  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
                        TypeSourceInfo *writtenTy,
                        SourceLocation tyBeginLoc, CastKind kind,
                        Expr *castExpr, unsigned pathSize,
                        SourceLocation rParenLoc) 
    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
                       castExpr, pathSize, writtenTy),
      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}

  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }

public:
  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
                                       ExprValueKind VK,
                                       TypeSourceInfo *Written,
                                       SourceLocation TyBeginLoc,
                                       CastKind Kind, Expr *Op,
                                       const CXXCastPath *Path,
                                       SourceLocation RPLoc);
  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
                                            unsigned PathSize);

  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(TyBeginLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFunctionalCastExprClass;
  }
  static bool classof(const CXXFunctionalCastExpr *) { return true; }
};

/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. With N == 1 arguments the 
/// functional cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// @code
/// struct X { X(int, float); }
///
/// X create_X() {
///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// @endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
  TypeSourceInfo *Type;

public:
  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
                         TypeSourceInfo *Type,
                         Expr **Args,unsigned NumArgs,
                         SourceRange parenRange,
                         bool HadMultipleCandidates,
                         bool ZeroInitialization = false);
  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }

  TypeSourceInfo *getTypeSourceInfo() const { return Type; }

  SourceRange getSourceRange() const;
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTemporaryObjectExprClass;
  }
  static bool classof(const CXXTemporaryObjectExpr *) { return true; }

  friend class ASTStmtReader;
};

/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
/// Expression "T()" which creates a value-initialized rvalue of type
/// T, which is a non-class type.
///
class CXXScalarValueInitExpr : public Expr {
  SourceLocation RParenLoc;
  TypeSourceInfo *TypeInfo;

  friend class ASTStmtReader;
  
public:
  /// \brief Create an explicitly-written scalar-value initialization 
  /// expression.
  CXXScalarValueInitExpr(QualType Type,
                         TypeSourceInfo *TypeInfo,
                         SourceLocation rParenLoc ) :
    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
         false, false, Type->isInstantiationDependentType(), false),
    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}

  explicit CXXScalarValueInitExpr(EmptyShell Shell)
    : Expr(CXXScalarValueInitExprClass, Shell) { }

  TypeSourceInfo *getTypeSourceInfo() const {
    return TypeInfo;
  }
  
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXScalarValueInitExprClass;
  }
  static bool classof(const CXXScalarValueInitExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }
};

/// CXXNewExpr - A new expression for memory allocation and constructor calls,
/// e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
  // Was the usage ::new, i.e. is the global new to be used?
  bool GlobalNew : 1;
  // Is there an initializer? If not, built-ins are uninitialized, else they're
  // value-initialized.
  bool Initializer : 1;
  // Do we allocate an array? If so, the first SubExpr is the size expression.
  bool Array : 1;
  // If this is an array allocation, does the usual deallocation
  // function for the allocated type want to know the allocated size?
  bool UsualArrayDeleteWantsSize : 1;
  // Whether the referred constructor (if any) was resolved from an
  // overload set having size greater than 1.
  bool HadMultipleCandidates : 1;
  // The number of placement new arguments.
  unsigned NumPlacementArgs : 13;
  // The number of constructor arguments. This may be 1 even for non-class
  // types; use the pseudo copy constructor.
  unsigned NumConstructorArgs : 14;
  // Contains an optional array size expression, any number of optional
  // placement arguments, and any number of optional constructor arguments,
  // in that order.
  Stmt **SubExprs;
  // Points to the allocation function used.
  FunctionDecl *OperatorNew;
  // Points to the deallocation function used in case of error. May be null.
  FunctionDecl *OperatorDelete;
  // Points to the constructor used. Cannot be null if AllocType is a record;
  // it would still point at the default constructor (even an implicit one).
  // Must be null for all other types.
  CXXConstructorDecl *Constructor;

  /// \brief The allocated type-source information, as written in the source.
  TypeSourceInfo *AllocatedTypeInfo;
  
  /// \brief If the allocated type was expressed as a parenthesized type-id, 
  /// the source range covering the parenthesized type-id.
  SourceRange TypeIdParens;
  
  SourceLocation StartLoc;
  SourceLocation EndLoc;
  SourceLocation ConstructorLParen;
  SourceLocation ConstructorRParen;

  friend class ASTStmtReader;
public:
  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
             Expr **placementArgs, unsigned numPlaceArgs,
             SourceRange TypeIdParens,
             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
             Expr **constructorArgs, unsigned numConsArgs,
             bool HadMultipleCandidates,
             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
             SourceLocation startLoc, SourceLocation endLoc,
             SourceLocation constructorLParen,
             SourceLocation constructorRParen);
  explicit CXXNewExpr(EmptyShell Shell)
    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }

  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
                         unsigned numConsArgs);
  
  QualType getAllocatedType() const {
    assert(getType()->isPointerType());
    return getType()->getAs<PointerType>()->getPointeeType();
  }

  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
    return AllocatedTypeInfo;
  }

  /// \brief True if the allocation result needs to be null-checked.
  /// C++0x [expr.new]p13:
  ///   If the allocation function returns null, initialization shall
  ///   not be done, the deallocation function shall not be called,
  ///   and the value of the new-expression shall be null.
  /// An allocation function is not allowed to return null unless it
  /// has a non-throwing exception-specification.  The '03 rule is
  /// identical except that the definition of a non-throwing
  /// exception specification is just "is it throw()?".
  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
  
  FunctionDecl *getOperatorNew() const { return OperatorNew; }
  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
  CXXConstructorDecl *getConstructor() const { return Constructor; }
  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }

  bool isArray() const { return Array; }
  Expr *getArraySize() {
    return Array ? cast<Expr>(SubExprs[0]) : 0;
  }
  const Expr *getArraySize() const {
    return Array ? cast<Expr>(SubExprs[0]) : 0;
  }

  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
  Expr **getPlacementArgs() { 
    return reinterpret_cast<Expr **>(SubExprs + Array); 
  }
  
  Expr *getPlacementArg(unsigned i) {
    assert(i < NumPlacementArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + i]);
  }
  const Expr *getPlacementArg(unsigned i) const {
    assert(i < NumPlacementArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + i]);
  }

  bool isParenTypeId() const { return TypeIdParens.isValid(); }
  SourceRange getTypeIdParens() const { return TypeIdParens; }

  bool isGlobalNew() const { return GlobalNew; }
  bool hasInitializer() const { return Initializer; }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.
  bool doesUsualArrayDeleteWantSize() const {
    return UsualArrayDeleteWantsSize;
  }

  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
  
  Expr **getConstructorArgs() {
    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
  }
  
  Expr *getConstructorArg(unsigned i) {
    assert(i < NumConstructorArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
  }
  const Expr *getConstructorArg(unsigned i) const {
    assert(i < NumConstructorArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
  }

  /// \brief Whether the new expression refers a constructor that was
  /// resolved from an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }

  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;

  arg_iterator placement_arg_begin() {
    return SubExprs + Array;
  }
  arg_iterator placement_arg_end() {
    return SubExprs + Array + getNumPlacementArgs();
  }
  const_arg_iterator placement_arg_begin() const {
    return SubExprs + Array;
  }
  const_arg_iterator placement_arg_end() const {
    return SubExprs + Array + getNumPlacementArgs();
  }

  arg_iterator constructor_arg_begin() {
    return SubExprs + Array + getNumPlacementArgs();
  }
  arg_iterator constructor_arg_end() {
    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
  }
  const_arg_iterator constructor_arg_begin() const {
    return SubExprs + Array + getNumPlacementArgs();
  }
  const_arg_iterator constructor_arg_end() const {
    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
  }
  
  typedef Stmt **raw_arg_iterator;
  raw_arg_iterator raw_arg_begin() { return SubExprs; }
  raw_arg_iterator raw_arg_end() {
    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
  }
  const_arg_iterator raw_arg_begin() const { return SubExprs; }
  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }

  SourceLocation getStartLoc() const { return StartLoc; }
  SourceLocation getEndLoc() const { return EndLoc; }

  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
  SourceLocation getConstructorRParen() const { return ConstructorRParen; }

  SourceRange getSourceRange() const {
    return SourceRange(StartLoc, EndLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNewExprClass;
  }
  static bool classof(const CXXNewExpr *) { return true; }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0],
                       &SubExprs[0] + Array + getNumPlacementArgs()
                         + getNumConstructorArgs());
  }
};

/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
/// calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
  // Is this a forced global delete, i.e. "::delete"?
  bool GlobalDelete : 1;
  // Is this the array form of delete, i.e. "delete[]"?
  bool ArrayForm : 1;
  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
  // will be true).
  bool ArrayFormAsWritten : 1;
  // Does the usual deallocation function for the element type require
  // a size_t argument?
  bool UsualArrayDeleteWantsSize : 1;
  // Points to the operator delete overload that is used. Could be a member.
  FunctionDecl *OperatorDelete;
  // The pointer expression to be deleted.
  Stmt *Argument;
  // Location of the expression.
  SourceLocation Loc;
public:
  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
           arg->isInstantiationDependent(),
           arg->containsUnexpandedParameterPack()),
      GlobalDelete(globalDelete),
      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
  explicit CXXDeleteExpr(EmptyShell Shell)
    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }

  bool isGlobalDelete() const { return GlobalDelete; }
  bool isArrayForm() const { return ArrayForm; }
  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.  This can be true even if the actual deallocation
  /// function that we're using doesn't want a size.
  bool doesUsualArrayDeleteWantSize() const {
    return UsualArrayDeleteWantsSize;
  }

  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }

  Expr *getArgument() { return cast<Expr>(Argument); }
  const Expr *getArgument() const { return cast<Expr>(Argument); }

  /// \brief Retrieve the type being destroyed.  If the type being
  /// destroyed is a dependent type which may or may not be a pointer,
  /// return an invalid type.
  QualType getDestroyedType() const;
  
  SourceRange getSourceRange() const {
    return SourceRange(Loc, Argument->getLocEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDeleteExprClass;
  }
  static bool classof(const CXXDeleteExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(&Argument, &Argument+1); }

  friend class ASTStmtReader;
};

/// \brief Structure used to store the type being destroyed by a 
/// pseudo-destructor expression.
class PseudoDestructorTypeStorage {
  /// \brief Either the type source information or the name of the type, if 
  /// it couldn't be resolved due to type-dependence.
  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
  
  /// \brief The starting source location of the pseudo-destructor type.
  SourceLocation Location;
  
public:
  PseudoDestructorTypeStorage() { }
  
  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
    : Type(II), Location(Loc) { }
  
  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
  
  TypeSourceInfo *getTypeSourceInfo() const { 
    return Type.dyn_cast<TypeSourceInfo *>(); 
  }
  
  IdentifierInfo *getIdentifier() const {
    return Type.dyn_cast<IdentifierInfo *>();
  }
  
  SourceLocation getLocation() const { return Location; }
};
  
/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have 
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
///   p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
/// 
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
///   ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
  /// \brief The base expression (that is being destroyed).
  Stmt *Base;

  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
  /// period ('.').
  bool IsArrow : 1;

  /// \brief The location of the '.' or '->' operator.
  SourceLocation OperatorLoc;
  
  /// \brief The nested-name-specifier that follows the operator, if present.
  NestedNameSpecifierLoc QualifierLoc;

  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
  /// expression.
  TypeSourceInfo *ScopeType;
  
  /// \brief The location of the '::' in a qualified pseudo-destructor 
  /// expression.
  SourceLocation ColonColonLoc;
  
  /// \brief The location of the '~'.
  SourceLocation TildeLoc;
  
  /// \brief The type being destroyed, or its name if we were unable to 
  /// resolve the name.
  PseudoDestructorTypeStorage DestroyedType;

  friend class ASTStmtReader;
  
public:
  CXXPseudoDestructorExpr(ASTContext &Context,
                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
                          NestedNameSpecifierLoc QualifierLoc,
                          TypeSourceInfo *ScopeType,
                          SourceLocation ColonColonLoc,
                          SourceLocation TildeLoc,
                          PseudoDestructorTypeStorage DestroyedType);

  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
    : Expr(CXXPseudoDestructorExprClass, Shell),
      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }

  Expr *getBase() const { return cast<Expr>(Base); }

  /// \brief Determines whether this member expression actually had
  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
  /// x->Base::foo.
  bool hasQualifier() const { return QualifierLoc; }

  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
  /// with source-location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
  
  /// \brief If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name. Otherwise, returns
  /// NULL.
  NestedNameSpecifier *getQualifier() const { 
    return QualifierLoc.getNestedNameSpecifier(); 
  }

  /// \brief Determine whether this pseudo-destructor expression was written
  /// using an '->' (otherwise, it used a '.').
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '.' or '->' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the scope type in a qualified pseudo-destructor 
  /// expression.
  ///
  /// Pseudo-destructor expressions can have extra qualification within them
  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
  /// Here, if the object type of the expression is (or may be) a scalar type,
  /// \p T may also be a scalar type and, therefore, cannot be part of a 
  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
  /// destructor expression.
  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
  
  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
  
  /// \brief Retrieve the location of the '~'.
  SourceLocation getTildeLoc() const { return TildeLoc; }
  
  /// \brief Retrieve the source location information for the type
  /// being destroyed.
  ///
  /// This type-source information is available for non-dependent 
  /// pseudo-destructor expressions and some dependent pseudo-destructor
  /// expressions. Returns NULL if we only have the identifier for a
  /// dependent pseudo-destructor expression.
  TypeSourceInfo *getDestroyedTypeInfo() const { 
    return DestroyedType.getTypeSourceInfo(); 
  }
  
  /// \brief In a dependent pseudo-destructor expression for which we do not
  /// have full type information on the destroyed type, provides the name
  /// of the destroyed type.
  IdentifierInfo *getDestroyedTypeIdentifier() const {
    return DestroyedType.getIdentifier();
  }
  
  /// \brief Retrieve the type being destroyed.
  QualType getDestroyedType() const;
  
  /// \brief Retrieve the starting location of the type being destroyed.
  SourceLocation getDestroyedTypeLoc() const { 
    return DestroyedType.getLocation(); 
  }

  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
  /// expression.
  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
  }

  /// \brief Set the destroyed type.
  void setDestroyedType(TypeSourceInfo *Info) {
    DestroyedType = PseudoDestructorTypeStorage(Info);
  }

  SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXPseudoDestructorExprClass;
  }
  static bool classof(const CXXPseudoDestructorExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(&Base, &Base + 1); }
};

/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_pod(int) == true
/// __is_enum(std::string) == false
class UnaryTypeTraitExpr : public Expr {
  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
  unsigned UTT : 31;
  /// The value of the type trait. Unspecified if dependent.
  bool Value : 1;

  /// Loc - The location of the type trait keyword.
  SourceLocation Loc;

  /// RParen - The location of the closing paren.
  SourceLocation RParen;

  /// The type being queried.
  TypeSourceInfo *QueriedType;

public:
  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, 
                     TypeSourceInfo *queried, bool value,
                     SourceLocation rparen, QualType ty)
    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
           false,  queried->getType()->isDependentType(),
           queried->getType()->isInstantiationDependentType(),
           queried->getType()->containsUnexpandedParameterPack()),
      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }

  explicit UnaryTypeTraitExpr(EmptyShell Empty)
    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
      QueriedType() { }

  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}

  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }

  QualType getQueriedType() const { return QueriedType->getType(); }

  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
  
  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnaryTypeTraitExprClass;
  }
  static bool classof(const UnaryTypeTraitExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }

  friend class ASTStmtReader;
};

/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_base_of(Base, Derived) == true
class BinaryTypeTraitExpr : public Expr {
  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
  unsigned BTT : 8;

  /// The value of the type trait. Unspecified if dependent.
  bool Value : 1;

  /// Loc - The location of the type trait keyword.
  SourceLocation Loc;

  /// RParen - The location of the closing paren.
  SourceLocation RParen;

  /// The lhs type being queried.
  TypeSourceInfo *LhsType;

  /// The rhs type being queried.
  TypeSourceInfo *RhsType;

public:
  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt, 
                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType, 
                     bool value, SourceLocation rparen, QualType ty)
    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false, 
           lhsType->getType()->isDependentType() ||
           rhsType->getType()->isDependentType(),
           (lhsType->getType()->isInstantiationDependentType() ||
            rhsType->getType()->isInstantiationDependentType()),
           (lhsType->getType()->containsUnexpandedParameterPack() ||
            rhsType->getType()->containsUnexpandedParameterPack())),
      BTT(btt), Value(value), Loc(loc), RParen(rparen),
      LhsType(lhsType), RhsType(rhsType) { }


  explicit BinaryTypeTraitExpr(EmptyShell Empty)
    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
      LhsType(), RhsType() { }

  SourceRange getSourceRange() const {
    return SourceRange(Loc, RParen);
  }

  BinaryTypeTrait getTrait() const {
    return static_cast<BinaryTypeTrait>(BTT);
  }

  QualType getLhsType() const { return LhsType->getType(); }
  QualType getRhsType() const { return RhsType->getType(); }

  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
  
  bool getValue() const { assert(!isTypeDependent()); return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BinaryTypeTraitExprClass;
  }
  static bool classof(const BinaryTypeTraitExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }

  friend class ASTStmtReader;
};

/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
/// implementation of __array_rank and __array_extent.
/// Example:
/// __array_rank(int[10][20]) == 2
/// __array_extent(int, 1)    == 20
class ArrayTypeTraitExpr : public Expr {
  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
  unsigned ATT : 2;

  /// The value of the type trait. Unspecified if dependent.
  uint64_t Value;

  /// The array dimension being queried, or -1 if not used
  Expr *Dimension;

  /// Loc - The location of the type trait keyword.
  SourceLocation Loc;

  /// RParen - The location of the closing paren.
  SourceLocation RParen;

  /// The type being queried.
  TypeSourceInfo *QueriedType;

public:
  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
                     TypeSourceInfo *queried, uint64_t value,
                     Expr *dimension, SourceLocation rparen, QualType ty)
    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
           false, queried->getType()->isDependentType(),
           (queried->getType()->isInstantiationDependentType() ||
            (dimension && dimension->isInstantiationDependent())),
           queried->getType()->containsUnexpandedParameterPack()),
      ATT(att), Value(value), Dimension(dimension),
      Loc(loc), RParen(rparen), QueriedType(queried) { }


  explicit ArrayTypeTraitExpr(EmptyShell Empty)
    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
      QueriedType() { }

  virtual ~ArrayTypeTraitExpr() { }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen); }

  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }

  QualType getQueriedType() const { return QueriedType->getType(); }

  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }

  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }

  Expr *getDimensionExpression() const { return Dimension; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ArrayTypeTraitExprClass;
  }
  static bool classof(const ArrayTypeTraitExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }

  friend class ASTStmtReader;
};

/// ExpressionTraitExpr - An expression trait intrinsic
/// Example:
/// __is_lvalue_expr(std::cout) == true
/// __is_lvalue_expr(1) == false
class ExpressionTraitExpr : public Expr {
  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
  unsigned ET : 31;
  /// The value of the type trait. Unspecified if dependent.
  bool Value : 1;

  /// Loc - The location of the type trait keyword.
  SourceLocation Loc;

  /// RParen - The location of the closing paren.
  SourceLocation RParen;

  Expr* QueriedExpression;
public:
  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, 
                     Expr *queried, bool value,
                     SourceLocation rparen, QualType resultType)
    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
           false, // Not type-dependent
           // Value-dependent if the argument is type-dependent.
           queried->isTypeDependent(),
           queried->isInstantiationDependent(),
           queried->containsUnexpandedParameterPack()),
      ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { }

  explicit ExpressionTraitExpr(EmptyShell Empty)
    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
      QueriedExpression() { }

  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}

  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }

  Expr *getQueriedExpression() const { return QueriedExpression; }

  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExpressionTraitExprClass;
  }
  static bool classof(const ExpressionTraitExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(); }

  friend class ASTStmtReader;
};


/// \brief A reference to an overloaded function set, either an
/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
class OverloadExpr : public Expr {
  /// The results.  These are undesugared, which is to say, they may
  /// include UsingShadowDecls.  Access is relative to the naming
  /// class.
  // FIXME: Allocate this data after the OverloadExpr subclass.
  DeclAccessPair *Results;
  unsigned NumResults;

  /// The common name of these declarations.
  DeclarationNameInfo NameInfo;

  /// \brief The nested-name-specifier that qualifies the name, if any.
  NestedNameSpecifierLoc QualifierLoc;

protected:
  /// True if the name was a template-id.
  bool HasExplicitTemplateArgs;

  OverloadExpr(StmtClass K, ASTContext &C,
               NestedNameSpecifierLoc QualifierLoc,
               const DeclarationNameInfo &NameInfo,
               const TemplateArgumentListInfo *TemplateArgs,
               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
               bool KnownDependent,
               bool KnownInstantiationDependent,
               bool KnownContainsUnexpandedParameterPack);

  OverloadExpr(StmtClass K, EmptyShell Empty)
    : Expr(K, Empty), Results(0), NumResults(0),
      QualifierLoc(), HasExplicitTemplateArgs(false) { }

  void initializeResults(ASTContext &C,
                         UnresolvedSetIterator Begin,
                         UnresolvedSetIterator End);

public:
  struct FindResult {
    OverloadExpr *Expression;
    bool IsAddressOfOperand;
    bool HasFormOfMemberPointer;
  };

  /// Finds the overloaded expression in the given expression of
  /// OverloadTy.
  ///
  /// \return the expression (which must be there) and true if it has
  /// the particular form of a member pointer expression
  static FindResult find(Expr *E) {
    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));

    FindResult Result;

    E = E->IgnoreParens();
    if (isa<UnaryOperator>(E)) {
      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
      E = cast<UnaryOperator>(E)->getSubExpr();
      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());

      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
      Result.IsAddressOfOperand = true;
      Result.Expression = Ovl;
    } else {
      Result.HasFormOfMemberPointer = false;
      Result.IsAddressOfOperand = false;
      Result.Expression = cast<OverloadExpr>(E);
    }

    return Result;
  }

  /// Gets the naming class of this lookup, if any.
  CXXRecordDecl *getNamingClass() const;

  typedef UnresolvedSetImpl::iterator decls_iterator;
  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
  decls_iterator decls_end() const { 
    return UnresolvedSetIterator(Results + NumResults);
  }
  
  /// Gets the number of declarations in the unresolved set.
  unsigned getNumDecls() const { return NumResults; }

  /// Gets the full name info.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// Gets the name looked up.
  DeclarationName getName() const { return NameInfo.getName(); }

  /// Gets the location of the name.
  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }

  /// Fetches the nested-name qualifier, if one was given.
  NestedNameSpecifier *getQualifier() const { 
    return QualifierLoc.getNestedNameSpecifier(); 
  }

  /// Fetches the nested-name qualifier with source-location information, if 
  /// one was given.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// \brief Determines whether this expression had an explicit
  /// template argument list, e.g. f<int>.
  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }

  ASTTemplateArgumentListInfo &getExplicitTemplateArgs(); // defined far below

  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
  }

  /// \brief Retrieves the optional explicit template arguments.
  /// This points to the same data as getExplicitTemplateArgs(), but
  /// returns null if there are no explicit template arguments.
  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
    if (!hasExplicitTemplateArgs()) return 0;
    return &getExplicitTemplateArgs();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass ||
           T->getStmtClass() == UnresolvedMemberExprClass;
  }
  static bool classof(const OverloadExpr *) { return true; }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration.  This
/// arises in several ways:
///   * we might be waiting for argument-dependent lookup
///   * the name might resolve to an overloaded function
/// and eventually:
///   * the lookup might have included a function template
/// These never include UnresolvedUsingValueDecls, which are always
/// class members and therefore appear only in
/// UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr : public OverloadExpr {
  /// True if these lookup results should be extended by
  /// argument-dependent lookup if this is the operand of a function
  /// call.
  bool RequiresADL;

  /// True if namespace ::std should be considered an associated namespace
  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
  bool StdIsAssociatedNamespace;

  /// True if these lookup results are overloaded.  This is pretty
  /// trivially rederivable if we urgently need to kill this field.
  bool Overloaded;

  /// The naming class (C++ [class.access.base]p5) of the lookup, if
  /// any.  This can generally be recalculated from the context chain,
  /// but that can be fairly expensive for unqualified lookups.  If we
  /// want to improve memory use here, this could go in a union
  /// against the qualified-lookup bits.
  CXXRecordDecl *NamingClass;

  UnresolvedLookupExpr(ASTContext &C, 
                       CXXRecordDecl *NamingClass,
                       NestedNameSpecifierLoc QualifierLoc,
                       const DeclarationNameInfo &NameInfo,
                       bool RequiresADL, bool Overloaded, 
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
                       bool StdIsAssociatedNamespace)
    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo, 
                   TemplateArgs, Begin, End, false, false, false),
      RequiresADL(RequiresADL),
      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
      Overloaded(Overloaded), NamingClass(NamingClass)
  {}

  UnresolvedLookupExpr(EmptyShell Empty)
    : OverloadExpr(UnresolvedLookupExprClass, Empty),
      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
      NamingClass(0)
  {}

  friend class ASTStmtReader;
  
public:
  static UnresolvedLookupExpr *Create(ASTContext &C,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifierLoc QualifierLoc,
                                      const DeclarationNameInfo &NameInfo,
                                      bool ADL, bool Overloaded,
                                      UnresolvedSetIterator Begin, 
                                      UnresolvedSetIterator End,
                                      bool StdIsAssociatedNamespace = false) {
    assert((ADL || !StdIsAssociatedNamespace) &&
           "std considered associated namespace when not performing ADL");
    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo, 
                                       ADL, Overloaded, 0, Begin, End,
                                       StdIsAssociatedNamespace);
  }

  static UnresolvedLookupExpr *Create(ASTContext &C,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifierLoc QualifierLoc,
                                      const DeclarationNameInfo &NameInfo,
                                      bool ADL,
                                      const TemplateArgumentListInfo &Args,
                                      UnresolvedSetIterator Begin, 
                                      UnresolvedSetIterator End);

  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
                                           bool HasExplicitTemplateArgs,
                                           unsigned NumTemplateArgs);

  /// True if this declaration should be extended by
  /// argument-dependent lookup.
  bool requiresADL() const { return RequiresADL; }

  /// True if namespace ::std should be artificially added to the set of
  /// associated namespaecs for argument-dependent lookup purposes.
  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }

  /// True if this lookup is overloaded.
  bool isOverloaded() const { return Overloaded; }

  /// Gets the 'naming class' (in the sense of C++0x
  /// [class.access.base]p5) of the lookup.  This is the scope
  /// that was looked in to find these results.
  CXXRecordDecl *getNamingClass() const { return NamingClass; }

  // Note that, inconsistently with the explicit-template-argument AST
  // nodes, users are *forbidden* from calling these methods on objects
  // without explicit template arguments.

  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
  }

  /// Gets a reference to the explicit template argument list.
  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
  }

  /// \brief Retrieves the optional explicit template arguments.
  /// This points to the same data as getExplicitTemplateArgs(), but
  /// returns null if there are no explicit template arguments.
  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
    if (!hasExplicitTemplateArgs()) return 0;
    return &getExplicitTemplateArgs();
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }
  
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  SourceRange getSourceRange() const {
    SourceRange Range(getNameInfo().getSourceRange());
    if (getQualifierLoc()) 
      Range.setBegin(getQualifierLoc().getBeginLoc());
    if (hasExplicitTemplateArgs()) 
      Range.setEnd(getRAngleLoc());
    return Range;
  }

  child_range children() { return child_range(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass;
  }
  static bool classof(const UnresolvedLookupExpr *) { return true; }
};

/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from on instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr : public Expr {
  /// \brief The nested-name-specifier that qualifies this unresolved
  /// declaration name.
  NestedNameSpecifierLoc QualifierLoc;
  
  /// The name of the entity we will be referencing.
  DeclarationNameInfo NameInfo;

  /// \brief Whether the name includes explicit template arguments.
  bool HasExplicitTemplateArgs;

  DependentScopeDeclRefExpr(QualType T,
                            NestedNameSpecifierLoc QualifierLoc,
                            const DeclarationNameInfo &NameInfo,
                            const TemplateArgumentListInfo *Args);

public:
  static DependentScopeDeclRefExpr *Create(ASTContext &C,
                                           NestedNameSpecifierLoc QualifierLoc,
                                           const DeclarationNameInfo &NameInfo,
                              const TemplateArgumentListInfo *TemplateArgs = 0);

  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
                                                bool HasExplicitTemplateArgs,
                                                unsigned NumTemplateArgs);

  /// \brief Retrieve the name that this expression refers to.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// \brief Retrieve the name that this expression refers to.
  DeclarationName getDeclName() const { return NameInfo.getName(); }

  /// \brief Retrieve the location of the name within the expression.
  SourceLocation getLocation() const { return NameInfo.getLoc(); }

  /// \brief Retrieve the nested-name-specifier that qualifies the
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
  
  
  /// \brief Retrieve the nested-name-specifier that qualifies this
  /// declaration.
  NestedNameSpecifier *getQualifier() const { 
    return QualifierLoc.getNestedNameSpecifier(); 
  }

  /// Determines whether this lookup had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }

  // Note that, inconsistently with the explicit-template-argument AST
  // nodes, users are *forbidden* from calling these methods on objects
  // without explicit template arguments.

  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
  }

  /// Gets a reference to the explicit template argument list.
  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
  }

  /// \brief Retrieves the optional explicit template arguments.
  /// This points to the same data as getExplicitTemplateArgs(), but
  /// returns null if there are no explicit template arguments.
  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
    if (!hasExplicitTemplateArgs()) return 0;
    return &getExplicitTemplateArgs();
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }
  
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  SourceRange getSourceRange() const {
    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DependentScopeDeclRefExprClass;
  }
  static bool classof(const DependentScopeDeclRefExpr *) { return true; }

  child_range children() { return child_range(); }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// Represents an expression --- generally a full-expression --- which
/// introduces cleanups to be run at the end of the sub-expression's
/// evaluation.  The most common source of expression-introduced
/// cleanups is temporary objects in C++, but several other C++
/// expressions can create cleanups.
class ExprWithCleanups : public Expr {
  Stmt *SubExpr;

  CXXTemporary **Temps;
  unsigned NumTemps;

  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
                   CXXTemporary **Temps, unsigned NumTemps);
  
public:
  ExprWithCleanups(EmptyShell Empty)
    : Expr(ExprWithCleanupsClass, Empty),
      SubExpr(0), Temps(0), NumTemps(0) {}
                         
  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
                                        CXXTemporary **Temps, 
                                        unsigned NumTemps);

  unsigned getNumTemporaries() const { return NumTemps; }
  void setNumTemporaries(ASTContext &C, unsigned N);
    
  CXXTemporary *getTemporary(unsigned i) {
    assert(i < NumTemps && "Index out of range");
    return Temps[i];
  }
  const CXXTemporary *getTemporary(unsigned i) const {
    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
  }
  void setTemporary(unsigned i, CXXTemporary *T) {
    assert(i < NumTemps && "Index out of range");
    Temps[i] = T;
  }

  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  SourceRange getSourceRange() const { 
    return SubExpr->getSourceRange();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExprWithCleanupsClass;
  }
  static bool classof(const ExprWithCleanups *) { return true; }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};

/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
/// where \c T is some type and \c a1, a2, ..., aN are values, and
/// either \C T is a dependent type or one or more of the \c a's is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
///   template<typename T, typename A1>
///   inline T make_a(const A1& a1) {
///     return T(a1);
///   }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr : public Expr {
  /// \brief The type being constructed.
  TypeSourceInfo *Type;
  
  /// \brief The location of the left parentheses ('(').
  SourceLocation LParenLoc;

  /// \brief The location of the right parentheses (')').
  SourceLocation RParenLoc;

  /// \brief The number of arguments used to construct the type.
  unsigned NumArgs;

  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
                             SourceLocation LParenLoc,
                             Expr **Args,
                             unsigned NumArgs,
                             SourceLocation RParenLoc);

  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }

  friend class ASTStmtReader;
  
public:
  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
                                            TypeSourceInfo *Type,
                                            SourceLocation LParenLoc,
                                            Expr **Args,
                                            unsigned NumArgs,
                                            SourceLocation RParenLoc);

  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
                                                 unsigned NumArgs);

  /// \brief Retrieve the type that is being constructed, as specified
  /// in the source code.
  QualType getTypeAsWritten() const { return Type->getType(); }

  /// \brief Retrieve the type source information for the type being 
  /// constructed.
  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
  
  /// \brief Retrieve the location of the left parentheses ('(') that
  /// precedes the argument list.
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  /// \brief Retrieve the location of the right parentheses (')') that
  /// follows the argument list.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  /// \brief Retrieve the number of arguments.
  unsigned arg_size() const { return NumArgs; }

  typedef Expr** arg_iterator;
  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
  arg_iterator arg_end() { return arg_begin() + NumArgs; }

  typedef const Expr* const * const_arg_iterator;
  const_arg_iterator arg_begin() const {
    return reinterpret_cast<const Expr* const *>(this + 1);
  }
  const_arg_iterator arg_end() const {
    return arg_begin() + NumArgs;
  }

  Expr *getArg(unsigned I) {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  const Expr *getArg(unsigned I) const {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  void setArg(unsigned I, Expr *E) {
    assert(I < NumArgs && "Argument index out-of-range");
    *(arg_begin() + I) = E;
  }

  SourceRange getSourceRange() const;
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
  }
  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }

  // Iterators
  child_range children() {
    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
    return child_range(begin, begin + NumArgs);
  }
};

/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses.  It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr : public Expr {
  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
  Stmt *Base;

  /// \brief The type of the base expression.  Never null, even for
  /// implicit accesses.
  QualType BaseType;

  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether this member expression has explicitly-specified template
  /// arguments.
  bool HasExplicitTemplateArgs : 1;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  /// \brief The nested-name-specifier that precedes the member name, if any.
  NestedNameSpecifierLoc QualifierLoc;

  /// \brief In a qualified member access expression such as t->Base::f, this
  /// member stores the resolves of name lookup in the context of the member
  /// access expression, to be used at instantiation time.
  ///
  /// FIXME: This member, along with the QualifierLoc, could
  /// be stuck into a structure that is optionally allocated at the end of
  /// the CXXDependentScopeMemberExpr, to save space in the common case.
  NamedDecl *FirstQualifierFoundInScope;

  /// \brief The member to which this member expression refers, which
  /// can be name, overloaded operator, or destructor.
  /// FIXME: could also be a template-id
  DeclarationNameInfo MemberNameInfo;

  CXXDependentScopeMemberExpr(ASTContext &C,
                          Expr *Base, QualType BaseType, bool IsArrow,
                          SourceLocation OperatorLoc,
                          NestedNameSpecifierLoc QualifierLoc,
                          NamedDecl *FirstQualifierFoundInScope,
                          DeclarationNameInfo MemberNameInfo,
                          const TemplateArgumentListInfo *TemplateArgs);

public:
  CXXDependentScopeMemberExpr(ASTContext &C,
                              Expr *Base, QualType BaseType,
                              bool IsArrow,
                              SourceLocation OperatorLoc,
                              NestedNameSpecifierLoc QualifierLoc,
                              NamedDecl *FirstQualifierFoundInScope,
                              DeclarationNameInfo MemberNameInfo);

  static CXXDependentScopeMemberExpr *
  Create(ASTContext &C,
         Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc,
         NestedNameSpecifierLoc QualifierLoc,
         NamedDecl *FirstQualifierFoundInScope,
         DeclarationNameInfo MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs);

  static CXXDependentScopeMemberExpr *
  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs, 
              unsigned NumTemplateArgs);

  /// \brief True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const;

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the nested-name-specifier that qualifies the member
  /// name.
  NestedNameSpecifier *getQualifier() const { 
    return QualifierLoc.getNestedNameSpecifier(); 
  }

  /// \brief Retrieve the nested-name-specifier that qualifies the member
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
  
  
  /// \brief Retrieve the first part of the nested-name-specifier that was
  /// found in the scope of the member access expression when the member access
  /// was initially parsed.
  ///
  /// This function only returns a useful result when member access expression
  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
  /// returned by this function describes what was found by unqualified name
  /// lookup for the identifier "Base" within the scope of the member access
  /// expression itself. At template instantiation time, this information is
  /// combined with the results of name lookup into the type of the object
  /// expression itself (the class type of x).
  NamedDecl *getFirstQualifierFoundInScope() const {
    return FirstQualifierFoundInScope;
  }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  const DeclarationNameInfo &getMemberNameInfo() const {
    return MemberNameInfo;
  }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMember() const { return MemberNameInfo.getName(); }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }

  /// \brief Determines whether this member expression actually had a C++
  /// template argument list explicitly specified, e.g., x.f<int>.
  bool hasExplicitTemplateArgs() const {
    return HasExplicitTemplateArgs;
  }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    assert(HasExplicitTemplateArgs);
    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
  }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    return const_cast<CXXDependentScopeMemberExpr *>(this)
             ->getExplicitTemplateArgs();
  }

  /// \brief Retrieves the optional explicit template arguments.
  /// This points to the same data as getExplicitTemplateArgs(), but
  /// returns null if there are no explicit template arguments.
  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
    if (!hasExplicitTemplateArgs()) return 0;
    return &getExplicitTemplateArgs();
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }

  /// \brief Initializes the template arguments using the given structure.
  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
    getExplicitTemplateArgs().initializeFrom(List);
  }

  /// \brief Retrieve the location of the left angle bracket following the
  /// member name ('<'), if any.
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  /// \brief Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  /// \brief Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  /// \brief Retrieve the location of the right angle bracket following the
  /// template arguments ('>').
  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  SourceRange getSourceRange() const {
    SourceRange Range;
    if (!isImplicitAccess())
      Range.setBegin(Base->getSourceRange().getBegin());
    else if (getQualifier())
      Range.setBegin(getQualifierLoc().getBeginLoc());
    else
      Range.setBegin(MemberNameInfo.getBeginLoc());

    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    else
      Range.setEnd(MemberNameInfo.getEndLoc());
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
  }
  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }

  // Iterators
  child_range children() {
    if (isImplicitAccess()) return child_range();
    return child_range(&Base, &Base + 1);
  }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
///    struct A {
///      int a, b;
///      int explicitAccess() { return this->a + this->A::b; }
///      int implicitAccess() { return a + A::b; }
///    };
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr : public OverloadExpr {
  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether the lookup results contain an unresolved using
  /// declaration.
  bool HasUnresolvedUsing : 1;

  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
  /// member expression
  Stmt *Base;

  /// \brief The type of the base expression;  never null.
  QualType BaseType;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
                       Expr *Base, QualType BaseType, bool IsArrow,
                       SourceLocation OperatorLoc,
                       NestedNameSpecifierLoc QualifierLoc,
                       const DeclarationNameInfo &MemberNameInfo,
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
  
  UnresolvedMemberExpr(EmptyShell Empty)
    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
      HasUnresolvedUsing(false), Base(0) { }

  friend class ASTStmtReader;
  
public:
  static UnresolvedMemberExpr *
  Create(ASTContext &C, bool HasUnresolvedUsing,
         Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc,
         NestedNameSpecifierLoc QualifierLoc,
         const DeclarationNameInfo &MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs,
         UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  static UnresolvedMemberExpr *
  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
              unsigned NumTemplateArgs);

  /// \brief True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const;

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  const Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether the lookup results contain an unresolved using
  /// declaration.
  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieves the naming class of this lookup.
  CXXRecordDecl *getNamingClass() const;

  /// \brief Retrieve the full name info for the member that this expression
  /// refers to.
  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMemberName() const { return getName(); }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return getNameLoc(); }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name.
  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
  }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ASTTemplateArgumentListInfo *>(this + 1);
  }

  /// \brief Retrieves the optional explicit template arguments.
  /// This points to the same data as getExplicitTemplateArgs(), but
  /// returns null if there are no explicit template arguments.
  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
    if (!hasExplicitTemplateArgs()) return 0;
    return &getExplicitTemplateArgs();
  }

  /// \brief Copies the template arguments into the given structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }

  /// \brief Retrieve the location of the left angle bracket following
  /// the member name ('<').
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  /// \brief Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  /// \brief Retrieve the number of template arguments provided as
  /// part of this template-id.
  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  /// \brief Retrieve the location of the right angle bracket
  /// following the template arguments ('>').
  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  SourceRange getSourceRange() const {
    SourceRange Range = getMemberNameInfo().getSourceRange();
    if (!isImplicitAccess())
      Range.setBegin(Base->getSourceRange().getBegin());
    else if (getQualifierLoc())
      Range.setBegin(getQualifierLoc().getBeginLoc());

    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedMemberExprClass;
  }
  static bool classof(const UnresolvedMemberExpr *) { return true; }

  // Iterators
  child_range children() {
    if (isImplicitAccess()) return child_range();
    return child_range(&Base, &Base + 1);
  }
};

/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
///
/// The noexcept expression tests whether a given expression might throw. Its
/// result is a boolean constant.
class CXXNoexceptExpr : public Expr {
  bool Value : 1;
  Stmt *Operand;
  SourceRange Range;

  friend class ASTStmtReader;

public:
  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
                  SourceLocation Keyword, SourceLocation RParen)
    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
           /*TypeDependent*/false,
           /*ValueDependent*/Val == CT_Dependent,
           Val == CT_Dependent || Operand->isInstantiationDependent(),
           Operand->containsUnexpandedParameterPack()),
      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
  { }

  CXXNoexceptExpr(EmptyShell Empty)
    : Expr(CXXNoexceptExprClass, Empty)
  { }

  Expr *getOperand() const { return static_cast<Expr*>(Operand); }

  SourceRange getSourceRange() const { return Range; }

  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNoexceptExprClass;
  }
  static bool classof(const CXXNoexceptExpr *) { return true; }

  // Iterators
  child_range children() { return child_range(&Operand, &Operand + 1); }
};

/// \brief Represents a C++0x pack expansion that produces a sequence of 
/// expressions.
///
/// A pack expansion expression contains a pattern (which itself is an
/// expression) followed by an ellipsis. For example:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(F f, Types &&...args) {
///   f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// Here, the argument to the function object \c f is a pack expansion whose
/// pattern is \c static_cast<Types&&>(args). When the \c forward function 
/// template is instantiated, the pack expansion will instantiate to zero or
/// or more function arguments to the function object \c f.
class PackExpansionExpr : public Expr {
  SourceLocation EllipsisLoc;
  
  /// \brief The number of expansions that will be produced by this pack
  /// expansion expression, if known.
  ///
  /// When zero, the number of expansions is not known. Otherwise, this value
  /// is the number of expansions + 1.
  unsigned NumExpansions;
  
  Stmt *Pattern;
  
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  
public:
  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
                    llvm::Optional<unsigned> NumExpansions)
    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(), 
           Pattern->getObjectKind(), /*TypeDependent=*/true, 
           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
           /*ContainsUnexpandedParameterPack=*/false),
      EllipsisLoc(EllipsisLoc),
      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
      Pattern(Pattern) { }

  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
  
  /// \brief Retrieve the pattern of the pack expansion.
  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }

  /// \brief Retrieve the pattern of the pack expansion.
  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }

  /// \brief Retrieve the location of the ellipsis that describes this pack
  /// expansion.
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  
  /// \brief Determine the number of expansions that will be produced when 
  /// this pack expansion is instantiated, if already known.
  llvm::Optional<unsigned> getNumExpansions() const {
    if (NumExpansions)
      return NumExpansions - 1;
    
    return llvm::Optional<unsigned>();
  }
  
  SourceRange getSourceRange() const {
    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == PackExpansionExprClass;
  }
  static bool classof(const PackExpansionExpr *) { return true; }
  
  // Iterators
  child_range children() {
    return child_range(&Pattern, &Pattern + 1);
  }
};
  
inline ASTTemplateArgumentListInfo &OverloadExpr::getExplicitTemplateArgs() {
  if (isa<UnresolvedLookupExpr>(this))
    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
  else
    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
}

/// \brief Represents an expression that computes the length of a parameter 
/// pack.
///
/// \code
/// template<typename ...Types>
/// struct count {
///   static const unsigned value = sizeof...(Types);
/// };
/// \endcode
class SizeOfPackExpr : public Expr {
  /// \brief The location of the 'sizeof' keyword.
  SourceLocation OperatorLoc;
  
  /// \brief The location of the name of the parameter pack.
  SourceLocation PackLoc;
  
  /// \brief The location of the closing parenthesis.
  SourceLocation RParenLoc;
  
  /// \brief The length of the parameter pack, if known.
  ///
  /// When this expression is value-dependent, the length of the parameter pack
  /// is unknown. When this expression is not value-dependent, the length is
  /// known.
  unsigned Length;
  
  /// \brief The parameter pack itself.
  NamedDecl *Pack;
  
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  
public:
  /// \brief Creates a value-dependent expression that computes the length of
  /// the given parameter pack.
  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack, 
                 SourceLocation PackLoc, SourceLocation RParenLoc)
    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
           /*TypeDependent=*/false, /*ValueDependent=*/true,
           /*InstantiationDependent=*/true,
           /*ContainsUnexpandedParameterPack=*/false),
      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
      Length(0), Pack(Pack) { }

  /// \brief Creates an expression that computes the length of
  /// the given parameter pack, which is already known.
  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack, 
                 SourceLocation PackLoc, SourceLocation RParenLoc,
                 unsigned Length)
  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
         /*TypeDependent=*/false, /*ValueDependent=*/false,
         /*InstantiationDependent=*/false,
         /*ContainsUnexpandedParameterPack=*/false),
    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
    Length(Length), Pack(Pack) { }

  /// \brief Create an empty expression.
  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
  
  /// \brief Determine the location of the 'sizeof' keyword.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Determine the location of the parameter pack.
  SourceLocation getPackLoc() const { return PackLoc; }
  
  /// \brief Determine the location of the right parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  
  /// \brief Retrieve the parameter pack.
  NamedDecl *getPack() const { return Pack; }
  
  /// \brief Retrieve the length of the parameter pack.
  ///
  /// This routine may only be invoked when the expression is not 
  /// value-dependent.
  unsigned getPackLength() const {
    assert(!isValueDependent() && 
           "Cannot get the length of a value-dependent pack size expression");
    return Length;
  }
  
  SourceRange getSourceRange() const {
    return SourceRange(OperatorLoc, RParenLoc);
  }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SizeOfPackExprClass;
  }
  static bool classof(const SizeOfPackExpr *) { return true; }
  
  // Iterators
  child_range children() { return child_range(); }
};

/// \brief Represents a reference to a non-type template parameter
/// that has been substituted with a template argument.
class SubstNonTypeTemplateParmExpr : public Expr {
  /// \brief The replaced parameter.
  NonTypeTemplateParmDecl *Param;

  /// \brief The replacement expression.
  Stmt *Replacement;

  /// \brief The location of the non-type template parameter reference.
  SourceLocation NameLoc;

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty) 
    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }

public:
  SubstNonTypeTemplateParmExpr(QualType type, 
                               ExprValueKind valueKind,
                               SourceLocation loc,
                               NonTypeTemplateParmDecl *param,
                               Expr *replacement)
    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
           replacement->isTypeDependent(), replacement->isValueDependent(),
           replacement->isInstantiationDependent(),
           replacement->containsUnexpandedParameterPack()),
      Param(param), Replacement(replacement), NameLoc(loc) {}

  SourceLocation getNameLoc() const { return NameLoc; }
  SourceRange getSourceRange() const { return NameLoc; }

  Expr *getReplacement() const { return cast<Expr>(Replacement); }
    
  NonTypeTemplateParmDecl *getParameter() const { return Param; }

  static bool classof(const Stmt *s) {
    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
  }
  static bool classof(const SubstNonTypeTemplateParmExpr *) { 
    return true; 
  }
  
  // Iterators
  child_range children() { return child_range(&Replacement, &Replacement+1); }
};

/// \brief Represents a reference to a non-type template parameter pack that
/// has been substituted with a non-template argument pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this node node is used to represent a non-type template 
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the appropriate underlying
/// expression at the current pack substitution index.
class SubstNonTypeTemplateParmPackExpr : public Expr {
  /// \brief The non-type template parameter pack itself.
  NonTypeTemplateParmDecl *Param;
  
  /// \brief A pointer to the set of template arguments that this
  /// parameter pack is instantiated with.
  const TemplateArgument *Arguments;
  
  /// \brief The number of template arguments in \c Arguments.
  unsigned NumArguments;
  
  /// \brief The location of the non-type template parameter pack reference.
  SourceLocation NameLoc;
  
  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty) 
    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
  
public:
  SubstNonTypeTemplateParmPackExpr(QualType T, 
                                   NonTypeTemplateParmDecl *Param,
                                   SourceLocation NameLoc,
                                   const TemplateArgument &ArgPack);
  
  /// \brief Retrieve the non-type template parameter pack being substituted.
  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }

  /// \brief Retrieve the location of the parameter pack name.
  SourceLocation getParameterPackLocation() const { return NameLoc; }
  
  /// \brief Retrieve the template argument pack containing the substituted
  /// template arguments.
  TemplateArgument getArgumentPack() const;

  SourceRange getSourceRange() const { return NameLoc; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
  }
  static bool classof(const SubstNonTypeTemplateParmPackExpr *) { 
    return true; 
  }
  
  // Iterators
  child_range children() { return child_range(); }
};

/// \brief Represents a prvalue temporary that written into memory so that
/// a reference can bind to it.
///
/// Prvalue expressions are materialized when they need to have an address
/// in memory for a reference to bind to. This happens when binding a
/// reference to the result of a conversion, e.g.,
///
/// \code
/// const int &r = 1.0;
/// \endcode
///
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
/// (either an lvalue or an xvalue, depending on the kind of reference binding
/// to it), maintaining the invariant that references always bind to glvalues.
class MaterializeTemporaryExpr : public Expr {
  /// \brief The temporary-generating expression whose value will be
  /// materialized.
 Stmt *Temporary;
  
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  
public:
  MaterializeTemporaryExpr(QualType T, Expr *Temporary, 
                           bool BoundToLvalueReference)
    : Expr(MaterializeTemporaryExprClass, T,
           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
           Temporary->isTypeDependent(), Temporary->isValueDependent(),
           Temporary->isInstantiationDependent(),
           Temporary->containsUnexpandedParameterPack()),
      Temporary(Temporary) { }
  
  MaterializeTemporaryExpr(EmptyShell Empty) 
    : Expr(MaterializeTemporaryExprClass, Empty) { }
  
  /// \brief Retrieve the temporary-generating subexpression whose value will
  /// be materialized into a glvalue.
  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
  
  /// \brief Determine whether this materialized temporary is bound to an
  /// lvalue reference; otherwise, it's bound to an rvalue reference.
  bool isBoundToLvalueReference() const { 
    return getValueKind() == VK_LValue;
  }
  
  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MaterializeTemporaryExprClass;
  }
  static bool classof(const MaterializeTemporaryExpr *) { 
    return true; 
  }
  
  // Iterators
  child_range children() { return child_range(&Temporary, &Temporary + 1); }
};
  
}  // end namespace clang

#endif