/usr/include/CLAM/SpectrumProduct.hxx is in libclam-dev 1.4.0-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | /*
* Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef _SPECTRUM_PRODUCT_
#define _SPECTRUM_PRODUCT_
#include "Processing.hxx"
#include "DynamicType.hxx"
#include "InPort.hxx"
#include "OutPort.hxx"
#include "Spectrum.hxx"
namespace CLAM {
/** This class performs the product of two Spectrum processing data
* objects. Its primary use will be to allow frecuency domain
* filtering, by taking the frecuency response as one of its inputs.
* (It implements the funcionality provided in the old
* CCLAMApplyFDFilter class).
* <p>
* It Allows any possible attribute configuration in its inputs and in
* its output, but it performs faster when prototype configuration of
* the data is specified using SetPrototypes(...), in certain
* situations:
* <ul>
* <li> When all the inputs and the outputs have a common attribute
* (not the BPF), and the same scale.
* <li> When one of the inputs has just a BPF attribute, and both the
* other input and the output have a common (non-BPF) attribute
* with the same scale in both objects.
* <li> In other cases, at least a vector conversion will be executed
* in one of the involved processing data objects. In some bad
* situations two conversions might be needed.
* </ul><p>
* @todo
* Possible optimisations (which require more states):
* <ul>
* <li> Implement direct product routines with inputs/outpust in
* different formats, and add the corresponding prototype states.
* <li> Expand the state space to avoid checking if the attribute to be
* used in the computation is instantiated in each of the objects.
* Right now the same state is used when the three objects have a
* common attribute, and when a common attribute is to be used, but
* some of the objects lack it (and need format conversion).
* </ul>
* <p>
* The BPFxBPF product is being thought. If both BPFs have the same
* range and point possition, the way to go is obvious, but in other
* situations it is not so simple. Whe should probably merge both
* BPFs, into a new BPF. */
class SpectrumProduct: public Processing
{
/** Size of the input/output vectors */
int mSize;
/** Possible configuration/prototype states */
typedef enum {
// Type states in with the same attribute is used for all
// of the inputs and the outputs (it may or may not be
// present; in the second case it will be added at Do(...)
// time.
SMagPhase, SComplex, SPolar,
// BPF output product
SBPF,
// Type states with only a BPF attribute in one of the
// inputs, other type in the other input and the
// output. The non-BPF attribute may or may not be
// instantiated. In the second case it will be added at
// Do(...) time.
SBPFMagPhase, SBPFComplex, SBPFPolar, SMagPhaseBPF,
SComplexBPF, SPolarBPF,
// State in which nothing is known about prototypes.
SOther
} PrototypeState;
/** Possible scale combinations */
typedef enum { Slinlin, Sloglog, Slinlog, Sloglin} ScaleState;
/** Config/Prototype state */
PrototypeState mProtoState;
/** Scale combination state */
ScaleState mScaleState;
const char *GetClassName() const {return "SpectrumProduct";}
public:
InPort<Spectrum> mInput1;
InPort<Spectrum> mInput2;
OutPort<Spectrum> mOutput;
SpectrumProduct(const Config &c=Config());
virtual ~SpectrumProduct();
bool Do();
bool Do(Spectrum& in1, Spectrum& in2, Spectrum& out);
// Port interfaces.
/** Change the internal type state.
* Apart from prototype configuration, the Size, Scale and
* SpectralRange attributes of each Spectrum are also
* checked.
*/
bool SetPrototypes(const Spectrum& in1,const Spectrum& in2,const Spectrum& out);
bool SetPrototypes();
bool UnsetPrototypes();
bool MayDisableExecution() const {return true;}
private:
/** Unoptimised internal multiplication method, when
* prototypes are not known (state SOther)
*/
inline void Multiply(Spectrum& in1, Spectrum& in2, Spectrum& out);
// Product methods for optimized configurations of the inputs/output
// Direct products
inline void MultiplyMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyPolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyPolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyPolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyPolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
// BPF Product
inline void MultiplyBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
// BPF filters application
inline void MultiplyBPFLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyMagPhaseBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFMagPhaseLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyComplexBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFComplexLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFPolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyPolarBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFPolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFPolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFPolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void MultiplyBPFPolarLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
};
}
#endif // _SPECTRUM_PRODUCT_
|