This file is indexed.

/usr/include/CLAM/ContiguousSegmentation.hxx is in libclam-dev 1.4.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#ifndef ContiguousSegmentation_hxx
#define ContiguousSegmentation_hxx

#include "Segmentation.hxx"

namespace CLAM
{
	class ContiguousSegmentation : public Segmentation
	{
	public:
		class InsertedOutOfBounds : public std::exception
		{
			public:
			const char * what() const throw () { return "Segmentation point inserted out of limits";}
		};
		typedef std::vector<double> TimePositions;
	public:
		ContiguousSegmentation(double maxPosition=0)
			: Segmentation(maxPosition)
		{
			_onsets.push_back(0);
			_offsets.push_back(maxPosition);
			_selection.push_back(false);

		}

		ContiguousSegmentation(double maxPosition, const TData * begin, const TData * end)
			: Segmentation(maxPosition)
		{
			_onsets.push_back(0);
			_offsets.push_back(maxPosition);
			_selection.push_back(false);
			takeArray(begin, end);
		}
		~ContiguousSegmentation()
		{
		}

		/**
		 * take data from an array.
		 */
		void takeArray(const TData * begin, const TData * end)
		{			
			for (const TData * it=begin; it!=end; it++)
				insert(*it);
		}
		
		/**
		 * Inserts a new border at timePosition.
		 */
		unsigned insert(double timePosition)
		{
			if (timePosition<=0.0) throw InsertedOutOfBounds();
			TimePositions::iterator insertPoint = 
				std::lower_bound(_offsets.begin(), _offsets.end(), timePosition);
			if (insertPoint == _offsets.end()) throw InsertedOutOfBounds();
			//if (insertPoint == _offsets.end()) return insertPoint - _offsets.begin();
			// 'position' must be computed before the insertion to not invalidate iterators.
			unsigned position = insertPoint - _offsets.begin() +1;
			_offsets.insert(insertPoint, timePosition);
			_onsets.insert(_onsets.begin()+position, _offsets[position-1]);
			_selection.insert(_selection.begin()+position, false);
			if (position<=_current) _current++;
			return position;
		}
		/**
		* move the last offset to maxPosition
		*/
		void maxPosition(double maxPosition)
		{
			Segmentation::maxPosition(maxPosition);
			_offsets.back()=maxPosition;
		}
		
		/**
		 * Removes the specified segment.
		 * The previous segment is expanded to cover the region.
		 * When removing the first segment, the next segment is the one expanded to start at 0.
		 * When just a single element, no efect at all.
		 */
		void remove(unsigned segment)
		{
			if (_offsets.size()==1) return;
			unsigned offsetToRemove = segment? segment-1 : 0;
			_offsets.erase(_offsets.begin()+offsetToRemove);
			_onsets.erase(_onsets.begin()+segment);
			_selection.erase(_selection.begin()+segment);
			if (_current!=0 && segment<=_current) _current--;
			if (segment==0) _onsets[0]=0;
		}
		/**
		 * Returns the index of the segment whose offset is nearest 
		 * to the given time position, and within the tolerance.
		 * If no end of segment within the tolerance range an invalid
		 * segment is returned (nSegments)
		 */
		unsigned pickOffset(double timePosition, double tolerance) const
		{
			return pickPosition(_offsets, timePosition, tolerance);
		}
		/**
		 * Returns the index of the segment whose onset is nearest
		 * to the given time position, and within the tolerance.
		 * If no end of segment within the tolerance range an invalid
		 * segment is returned (nSegments)
		 */
		unsigned pickOnset(double timePosition, double tolerance) const
		{
			return pickPosition(_onsets, timePosition, tolerance);
		}
		/**
		 * Returns the index of the segment which body is on timePosition.
		 */
		unsigned pickSegmentBody(double timePosition) const
		{
			if (timePosition<0) return _offsets.size();
			TimePositions::const_iterator lowerBound =
				std::lower_bound(_offsets.begin(), _offsets.end(), timePosition);
			return lowerBound - _offsets.begin();
		}
		/**
		 * Performs a dragging movement for the Onset of the given
		 * segment in order to move it to the newTimePosition.
		 * Constraints for the segmentation mode are applied.
		 */
		void dragOnset(unsigned segment, double newTimePosition)
		{
			// first onset cannot be moved on Contiguous mode
			if (segment==0) return;
			// The onset is attached to the previous offset
			dragOffset(segment-1, newTimePosition);
		}
		/**
		 * Performs a dragging movement for the Offset of the given
		 * segment in order to move it to the newTimePosition.
		 * Constraints for the segmentation mode are applied.
		 */
		void dragOffset(unsigned segment, double newTimePosition)
		{
			if (segment==_offsets.size()) return; // Invalid segment
			if (segment==_offsets.size()-1) return; // Last offset, cannot be moved

			// Limit movement on the left to the onset
			if (newTimePosition<_onsets[segment])
				newTimePosition = _onsets[segment];
			// Limit movement on the right to the next offset
			if (newTimePosition>_offsets[segment+1])
				newTimePosition = _offsets[segment+1];

			// The offset and the next onset change together
			_offsets[segment]=newTimePosition;
			_onsets[segment+1]=newTimePosition;
		}
		/**
		* Performs an implementation to fill the DataArray with the segmentation
		*/
		void fillArray(DataArray& segmentation) const
		{
			unsigned nSegments= _onsets.size();
			segmentation.Resize(nSegments-1);
			segmentation.SetSize(nSegments-1);
			for(unsigned i=1; i<nSegments; i++)
				segmentation[i-1]=_onsets[i];
		}
		const char * GetClassName() const { return "ContiguousSegmentation"; }

	private:
		/**
		 * Returns the index of the time position which is nearest
		 * to the given time position and within the tolerance.
		 * If no end of segment within the tolerance range an invalid
		 * index is returned (nPositions)
		 * @pre positions is a sorted array
		 */
		unsigned pickPosition(const TimePositions & positions, double timePosition, double tolerance) const
		{
			TimePositions::const_iterator lowerBound = 
				std::lower_bound(positions.begin(), positions.end(), timePosition-tolerance);
			TimePositions::const_iterator upperBound = 
				std::upper_bound(lowerBound, positions.end(), timePosition+tolerance);

			if (lowerBound==upperBound) return positions.size(); // None found
	
			// Pick the closest in range
			unsigned lowerSegment = lowerBound - positions.begin();
			unsigned upperSegment = upperBound - positions.begin();
			double lastDifference = std::fabs(timePosition-positions[lowerSegment]);
			for (unsigned i=lowerSegment; i<upperSegment; i++)
			{
				double newDifference = std::fabs(timePosition-positions[i]);
				if (newDifference>lastDifference) break;
				lastDifference = newDifference;
				lowerSegment = i;
			}
			return lowerSegment;
		}
	};

}



#endif//ContiguousSegmentation_hxx