This file is indexed.

/usr/include/CLAM/CircularPeakPicking.hxx is in libclam-dev 1.4.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
 * Copyright (c) 2001-2006 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef CircularPeakPicking_hxx
#define CircularPeakPicking_hxx
#include <list>
#include <vector>

namespace Simac
{

/**
 * This processing takes a vector of scalars magnitudes and returns
 * a list of peaks found considering that the first and last bins
 * are neighbors.
 * Peaks are detected when there is a bin that is greater that neighbor
 * at both sides.
 * Then peak position and value are interpolated using a quadratic function
 * that passes also by the two neighbors bins.
 *
 * The first bin is considered at offset and each bin increases binSize.
 * By default, binSize and offset are 1 and 0 so that the bin position
 * matches the resulting position.
 *
 * @author David Garcia
 */
class CircularPeakPicking
{
public:
	typedef std::vector<std::pair<double, double> > PeakList;
private:
	PeakList _output;
	unsigned int _maxSize;
	double _binSize;
	double _offset;
public:
	CircularPeakPicking(unsigned chromagramSize, double binSize=1.0, double offset=0.0)
		: _maxSize(chromagramSize), _binSize(binSize), _offset(offset)
	{
		_output.reserve(chromagramSize);
	}
	/**
	*  Find the maximum of an interpolated quadratic polynomial function
	*  giving the samples at three equidistant points at x=0, x=1 and x=2.
	*  You can use it for any equidistant samples just by adding x0 to
	*  the resulting xmax.
	* 
	*  @pre The function will fail when y0>=y1 or y2>=y1, as it is supposed to
	*  be applied after having located a peak in y1.
	*  @returns A pair containing xmax,ymax
	*/
	std::pair<double,double> interpolate(double y0, double y1, double y2)
	{
		// From the quadratic lagrange interpolation
		// y=   y0(x1-x)(x2-x)/(x1-x0)(x2-x0) +
		//    + y1(x-x0)(x2-x)/(x1-x0)(x2-x0) +
		//    + y1(x2-x)(x-x0)/(x2-x1)(x2-x0) +
		//    + y2(x-x1)(x-x0)/(x2-x1)(x2-x0)  =
		//
		// considering x0=0, x1=1 and x2=2
		//
		//  =   y0(x-1)(x-2)/2 +
		//    - y1(x)(x-2)/2 +
		//    - y1(x-2)(x)/2 +
		//    + y2(x-1)(x)/2  =
		//
		//  =   y0(x-1)(x-2)/2 +
		//    - y1(x-2)(x) +
		//    + y2(x-1)(x)/2 =
		//
		//  = y0/2 (x^2 - 3x + 2) - y1 (x^2-2x) + y2/2 (x^2-x)
		//  = (y0/2-y1+y2/2) x^2 + (-3*y0/2 + 2*y1 - y2/2) x + y0

		double a = y0/2 - y1 + y2/2;
		double b = y1 -y0 -a; // = -3*y0/2 + 2*y1 -y2/2;
		double c = y0;

		// From equating to zero the derivate of x*x*a + x*b + c	
		double xmax = -b/(a*2);
		// ymax = xmax*xmax*a + b*xmax + c =
		//      = a*b*b/(4*a*a) -b*b/(2*a) + c =
		//      = b*b/(4*a) -b*b/(2*a) + c =
		//      = -b*b/(4*a) + c
		double ymax = b*xmax/2 + y0;

		return std::make_pair(xmax, ymax);
	}
	void doIt(const std::vector<double> & chromagram)
	{
		_output.resize(0);
		unsigned i0=_maxSize-2;
		unsigned i1=_maxSize-1;
		for (unsigned i=0; i<_maxSize; i0=i1, i1=i, i++)
		{
			// not equal to support plain two bins peaks
			if (chromagram[i0] >  chromagram[i1]) continue;
			if (chromagram[i ] >= chromagram[i1]) continue;

			std::pair<double,double> interpoled=
				interpolate(chromagram[i0],chromagram[i1],chromagram[i]);
			// Adding the base bin
			interpoled.first+=i0;
			// Folding to [0,_maxSize) interval
			while (interpoled.first<0) interpoled.first +=_maxSize;
			while (interpoled.first>=_maxSize) interpoled.first -=_maxSize;
			// Scaling
			interpoled.first*=_binSize;
			// Shifting to the first bin position
			interpoled.first+=_offset;

			_output.push_back(interpoled);
		}
	}
	const PeakList & output() const
	{
		return _output;
	}
};

} // namespace Simac

#endif// CircularPeakPicking_hxx