/usr/include/CLAM/BPFTmplDef.hxx is in libclam-dev 1.4.0-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 | /*
* Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef _BPFTmplDef_
#define _BPFTmplDef_
#include "GlobalEnums.hxx"
namespace CLAM
{
template <typename TX, typename TY> const TData BPFTmpl<TX,TY>::Infinity = TData(1e30);
/**
* Default constructor: takes interpolation to be linear by default
*/
template <class TX,class TY>
BPFTmpl<TX,TY>::BPFTmpl() :
mArray(0),
mSearch(mArray),
mClosestPoints(10),
mc(2),
md(2),
mOrder(1),
mLastIndex(-1),
mLastX(0),
mSplineTable(0),
mIsSplineUpdated(false),
mLeftDerivative((TData)Infinity),
mRightDerivative((TData)Infinity)
{
mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
mc.SetSize(2);
md.SetSize(2);
meInterpolation=EInterpolation::eLinear;
}
/**
* Constructor from a given interpolation type.
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
template <class TX,class TY>
BPFTmpl<TX,TY>::BPFTmpl(const EInterpolation& eInterpolation) :
mArray(0),
mSearch(mArray),
mClosestPoints(10),
mc(0),
md(0),
mLastIndex(-1),
mLastX(0),
mSplineTable(0),
mIsSplineUpdated(false),
mLeftDerivative(Infinity),
mRightDerivative(Infinity)
{
mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
SetIntpType(eInterpolation);
}
/**
* Constructor from a given interpolation type and an initial size. The initial size is used
* to allocate the member mArray. Is the one to use for efficiency whenever a maximum size of
* the BPF is known beforehand.
* @param size: Allocation size for the member array of points.
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
template <class TX,class TY>
BPFTmpl<TX,TY>::BPFTmpl(TSize size) :
mArray(size),
mSearch(mArray),
mClosestPoints(10),
mc(0),
md(0),
mLastIndex(-1),
mLastX(0),
mSplineTable(0),
mIsSplineUpdated(false),
mLeftDerivative(Infinity),
mRightDerivative(Infinity)
{
mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
SetIntpType(EInterpolation::eLinear);
SetSize(size);
}
/**
* Constructor from a given interpolation type and an initial size. The initial size is used
* to allocate the member mArray. Is the one to use for efficiency whenever a maximum size of
* the BPF is known beforehand.
* @param size: Allocation size for the member array of points.
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
template <class TX,class TY>
BPFTmpl<TX,TY>::BPFTmpl(TSize size,const EInterpolation& eInterpolation) :
mArray(size),
mSearch(mArray),
mClosestPoints(10),
mc(0),
md(0),
mLastIndex(-1),
mLastX(0),
mSplineTable(0),
mIsSplineUpdated(false),
mLeftDerivative(Infinity),
mRightDerivative(Infinity)
{
mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
SetIntpType(eInterpolation);
SetSize(size);
}
/**
* Copy Constructor.
* @param originalBPF
*/
template <class TX,class TY>
BPFTmpl<TX,TY>::BPFTmpl(const BPFTmpl<TX,TY>& orig) :
meInterpolation(orig.meInterpolation),
mArray(orig.mArray),
mClosestPoints(orig.mClosestPoints.AllocatedSize()),
mc(orig.mc.AllocatedSize()),
md(orig.md.AllocatedSize()),
mOrder(orig.mOrder),
mLastIndex(-1),
mLastX(0),
mSplineTable(orig.mSplineTable),
mIsSplineUpdated(orig.mIsSplineUpdated),
mLeftDerivative(orig.mLeftDerivative),
mRightDerivative(orig.mRightDerivative)
{
mClosestPoints.SetSize(orig.mClosestPoints.Size());
mc.SetSize(orig.mc.Size());
md.SetSize(orig.md.Size());
mSearch.Set(mArray);
mnPoints=orig.mnPoints;
}
/**
* Special initializer. All points up to the allocated size are initialized with the X value
* being the actual index in the array.
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::Init()
{
mArray.SetSize(AllocatedSize());
for(int i=0;i<AllocatedSize();i++)
{
mArray[i].SetX((TX)i);
SetValue(i,0);
}
}
/**
* Inserts a point in the correct position. Note that points in the array are always sorted
* according to their X value. Must therefore perform a previous serch.
* @param point to insert
* @return the index at which the element was inserted
* @see CLAM::SearchArray
*/
template <class TX,class TY>
TIndex BPFTmpl<TX,TY>::Insert(const PointTmpl<TX,TY> &point)
{
mIsSplineUpdated = false;
if (mArray.Size() == 0 || point.GetX() > mArray[Size()-1].GetX())
{
mArray.AddElem(point);
return Size()-1;
}
TIndex closestIndex = mSearch.Find(point);
if (closestIndex == -1)
{
if (point.GetX() >= GetXValue(Size() - 1))
{
mArray.AddElem(point);
return Size()-1;
}
else
{
mArray.InsertElem(0, point);
return 0;
}
}
else
{
if (GetXValue(closestIndex) == point.GetX())
{
SetValue(closestIndex, point.GetY());
return closestIndex;
}
else
{
mArray.InsertElem(closestIndex+1 ,point);
return closestIndex+1;
}
}
}
/**
* Inserts a point made of an X and a Y value in the correct position. Note that
* points in the array are always sorted according to their X value. Must therefore
* perform a previous serch.
* @param : X value
* @param : Y value
* @see : Insert
*/
template <class TX,class TY>
TIndex BPFTmpl<TX,TY>::Insert(const TX &x,const TX &y)
{
PointTmpl<TX,TY> tmpPoint(x,y);
return Insert(tmpPoint);
}
/**
* Deletes the point found at the given index
* @param : index of the point to delete
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::DeleteIndex(TIndex index){
mArray.DeleteElem(index);
mIsSplineUpdated=false;
}
/**
* Deletes the point with a closest X value to the one given
* @param : X value of the point to delete
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::DeleteThroughXValue(const TX& x)
{
mArray.DeleteElem(GetPosition(x));
mIsSplineUpdated=false;
}
/**
* Deletes the points between indices given
* @param : left index
* @param : right index
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::DeleteBetweenIndex(TIndex leftIndex,TIndex rightIndex)
{
for (int i=leftIndex; i<=rightIndex; i++)
{
DeleteIndex(leftIndex);
}
mIsSplineUpdated=false;
}
/**
* Deletes the points having an X value in between the ones given
* @param : left X value
* @param : right X value
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::DeleteBetweenXValues(const TX& leftX,const TX& rightX)
{
TIndex leftIndex=GetPosition(leftX);
TIndex rightIndex=GetPosition(rightX);
DeleteBetweenIndex(leftIndex,rightIndex);
mIsSplineUpdated=false;
}
/**
* Setting a different interpolation type. Auxiliary member arrays mc and md are resized if
* necessary.
* @param : new interpolation type
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::SetIntpType(const EInterpolation& eInterpolation)
{
meInterpolation=eInterpolation;
switch(eInterpolation)
{
case(EInterpolation::eLinear)://linear interpolation between two closest points
{
mOrder=1;
break;
}
case(EInterpolation::ePolynomial2)://parabolic interpolation
{
mOrder=2;
break;
}
case(EInterpolation::ePolynomial3)://3rd order polynomial interpolation
{
mOrder=3;
break;
}
case(EInterpolation::ePolynomial4)://4th order polynomial interpolation
{
mOrder=4;
break;
}
case(EInterpolation::ePolynomial5)://5th order polynomial interpolation
{
mOrder=5;
break;
}
case(EInterpolation::ePolynomialn):/*nth order polynomial interpolation where n is number
of points in the BPF-1. Must be less than 10*/
{
CLAM_ASSERT(Size()<11,"BPF::SetIntpType:Cannot ser more than 10th order interpolation");
mOrder=Size()-1;
break;
}
case(EInterpolation::eSpline ): // MRJ: Nice refactoring, but forgot about the Spline...
{
return;
}
default:
{
CLAM_ASSERT( false, "Unsupported interpolation method" );
}
}
const unsigned newSize = mOrder+1;
mc.Resize(newSize);
mc.SetSize(newSize);
md.Resize(newSize);
md.SetSize(newSize);
}
/**
* Getting the value of a point from the value of its X component. Performs the kind
* of interpolation passed as parameter
* @param : X value
* @param : interpolation type
* @see : GetValueFromIndex
*/
template <class TX,class TY>
TY BPFTmpl<TX,TY>::GetValue(const TX& x,const EInterpolation& eInterpolation) const /*Gets value
according to the interpolation type set*/
{
// First we should check if the the x value belongs to the BPF itself
// and there is no need to interpolate
if(x<mLastX) mLastIndex=0;
TIndex i=mSearch.Find( PointTmpl<TX,TY>(x,0.0), mLastIndex);
if(i==-1)
{
// Outside of the BPF; get the first or last value
if (GetXValue(0)>x)
return GetValueFromIndex(0);
else
return GetValueFromIndex(Size()-1);
}
mLastIndex=i;
mLastX=x;
if(GetXValue(mLastIndex)==x) return GetValueFromIndex(mLastIndex);
switch(eInterpolation)
{
case(EInterpolation::eStep)://returns previous point value
{
GetnClosest(mLastIndex);
if(GetXValue(mClosestPoints[0])<=x)
return GetValueFromIndex(mClosestPoints[0]);
return GetValueFromIndex(mClosestPoints[0]+1);
}
case(EInterpolation::eRound)://return closest point value
{
GetnClosest(mLastIndex);
return GetValueFromIndex(mClosestPoints[0]);
}
case(EInterpolation::eLinear)://linear interpolation between two closest points
{
TData error=0;
if(GetXValue(mLastIndex)<=x)
{
mClosestPoints[0]=mLastIndex;
mClosestPoints[1]=mLastIndex+1;
}
else
{
mClosestPoints[0]=mLastIndex-1;
mClosestPoints[1]=mLastIndex;
}
return BPFPolInt(x,mClosestPoints,error);
}
case(EInterpolation::eSpline)://3rd order spline interpolation
{
CLAM_ASSERT(mIsSplineUpdated,"BPF::Spline table not updated");
return BPFSplineInt(x);//get actual value
}
case(EInterpolation::ePolynomial2)://parabolic interpolation
case(EInterpolation::ePolynomial3)://3rd order polynomial interpolation
case(EInterpolation::ePolynomial4)://4th order polynomial interpolation
case(EInterpolation::ePolynomial5)://5th order polynomial interpolation
{
TData error=0;
GetnClosest(mLastIndex);
return BPFPolInt(x,mClosestPoints,error);
}
case(EInterpolation::ePolynomialn):/*nth order polynomial interpolation where n is number
of points in the BPF-1*/
{
Array<TIndex> indexArray(mArray.Size());
TData error=0;
for(TIndex i=0; i<mArray.Size(); i++)
{
indexArray[i]=i;
}
return BPFPolInt(x,indexArray,error);
}
default:
{
CLAM_ASSERT(false, "Invalid BPF interpolation method.");
return 0;
}
}
}
/**
* Fills the interpolation points index buffer with the n closest points to
* the selected point, trying to keep n/2 points to the right and n/2 to the left
* whenever possible, being n the interpolation order plus one.
* <p>
* When the point are too near the BPF edges, selected points are adjusted to this edge.
* When n is an even value, only n/2-1 points are selected at the left side of the selected index.
* @param foundIndex The index of the central point.
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::GetnClosest(TIndex foundIndex) const
{
CLAM_ASSERT(Size() >= mOrder+1, "BPF size must be at least the interpolation order plus one");
int first = foundIndex-mOrder/2;
// Fix the first index when it goes too
if (first<0) first=0;
// At least mOrder+1 fordward
int safelimit = Size()-(mOrder+1);
if (first>safelimit) first = safelimit;
for(int i=0; i<mOrder+1; i++) {
mClosestPoints[i]=first+i;
}
/*
TIndex oP=GetPosition(x);
int N = mArray.Size();
TIndex i, j;
TData elemToTake = (n-1.0)/2.0;
int toTakeToTheLeft = (int)elemToTake;
int toTakeToTheRight = (int)ceil(elemToTake);
int dL = (oP) - toTakeToTheLeft;
int dR = (N-oP) - toTakeToTheRight;
if (dL>= 0 && dR >= 0)
{
i = oP - toTakeToTheLeft;
j = oP + toTakeToTheRight;
if (j == N)
{
j = N-1;
i--;
}
}
else if (dL<0 && dR >= 0)
{
i = 0;
j = oP + toTakeToTheRight + (-1)*dL;
}
else if (dL>=0 && dR < 0)
{
j = N-1;
i = oP - toTakeToTheLeft - (-1)*dR - 1 ;
}
else if (dL<0 && dR < 0)
{
throw Err("Not enough Points to interpolate");
}
for (int k=i; k<=j; k++)
{
mClosestPoints[k-i] = k;
}*/
}
/**
* Get point position in BPf from X value
* @param : X value
* @return : index position
*/
template <class TX,class TY>
TIndex BPFTmpl<TX,TY>::GetPosition(const TX& x) const
{
PointTmpl<TX,TY> tmpPoint(x,0);
return mSearch.Find(tmpPoint);
}
/**
* = operator, TODO: check!!!!
*/
template <class TX,class TY>
BPFTmpl<TX,TY>& BPFTmpl<TX,TY>::operator=(const BPFTmpl<TX,TY> &originalBPF)
{
meInterpolation = originalBPF.meInterpolation;
mArray = originalBPF.mArray;
mSearch.Set(mArray);
mSplineTable = originalBPF.mSplineTable;
mIsSplineUpdated = originalBPF.mIsSplineUpdated;
mnPoints=originalBPF.mnPoints;
mOrder=originalBPF.mOrder;
return *this;
}
/**
* Updates Spline table creating it from scratch
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::UpdateSplineTable()
{
if(!mIsSplineUpdated)
CreateSplineTable(); // Create spline table if not updated
mIsSplineUpdated=true;
}
/**
* Changes the BPF border conditions
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::SetLeftDerivative(TData val)
{
mLeftDerivative = val;
mIsSplineUpdated=false;
}
template <class TX,class TY>
void BPFTmpl<TX,TY>::UnsetLeftDerivative(void)
{
if (mLeftDerivative < Infinity) {
mLeftDerivative = Infinity;
mIsSplineUpdated=false;
}
}
/**
* Changes the BPF border conditions
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::SetRightDerivative(TData val)
{
mRightDerivative = val;
mIsSplineUpdated=false;
}
template <class TX,class TY>
void BPFTmpl<TX,TY>::UnsetRightDerivative(void)
{
if (mLeftDerivative < Infinity) {
mRightDerivative = Infinity;
mIsSplineUpdated=false;
}
}
/**
* Member protected method
* Performs the actual polynomial interpolation algorithm
*/
template <class TX,class TY>
TY BPFTmpl<TX,TY>::BPFPolInt
(const TX& x,const Array<TIndex>& closestPointsIndex, TData &errorEstimate)
const
{
int iClosest=0;
TX dif=Abs(x-GetXValue(closestPointsIndex[0]));
for(int i=0; i<=mOrder; i++)
{
TX dift=Abs(x-GetXValue(closestPointsIndex[i]));
if(dift<dif)
{
iClosest=i;
dif=dift;
}
md[i]=mc[i]=GetValueFromIndex(closestPointsIndex[i]);
}
TY y=GetValueFromIndex(closestPointsIndex[iClosest]);
for(int m=0; m<mOrder; m++)
{
for(int i=0; i<mOrder-m; i++)
{
TX ho=GetXValue(closestPointsIndex[i])-x;
TX hp=GetXValue(closestPointsIndex[i+m+1])-x;
TX w=mc[i+1]-md[i];
TX den=ho-hp;
CLAM_ASSERT(den!=0, "Division by zero error interpolating BPF");
den=w/den;
md[i]=hp*den;
mc[i]=ho*den;
}
if ( 2*iClosest < mOrder-m )
{
errorEstimate=mc[iClosest];
}
else
{
errorEstimate=md[iClosest-1];
iClosest--;
}
y+=errorEstimate;
}
return y;
}
/**
* Member protected method
* creates spline table from current points in BPF
*/
template <class TX,class TY>
void BPFTmpl<TX,TY>::CreateSplineTable()
{
int n=mArray.Size();
CLAM_ASSERT(n > 2,"BPF size too small for spline");
Array<TY> u(n);
u.SetSize(n);
mSplineTable.Resize(n);
mSplineTable.SetSize(n);
if (mLeftDerivative >= Infinity)
mSplineTable[0]=u[0]=0.0; // For a 'natural' spline
else {
mSplineTable[0] = -0.5;
u[0]= (TData(3.0) / (GetXValue(1)-GetXValue(0)) ) *
( (GetValueFromIndex(1) - GetValueFromIndex(0)) /
(GetXValue(1) - GetXValue(0))
- mLeftDerivative );
}
for(int i=2;i<=n-1;i++)
{
TY sig=(GetXValue(i-1)-GetXValue(i-2))/(GetXValue(i)-GetXValue(i-2));
TY p=sig*mSplineTable[i-2]+2;
mSplineTable[i-1]=(sig-1)/p;
u[i-1]=(GetValueFromIndex(i)-GetValueFromIndex(i-1))/(GetXValue(i)-GetXValue(i-1))-
(GetValueFromIndex(i-1)-GetValueFromIndex(i-2))/(GetXValue(i-1)-GetXValue(i-2));
u[i-1]=(6*u[i-1]/(GetXValue(i)-GetXValue(i-2))-sig*u[i-2])/p;
}
TY qn = 0.0;
TY un = 0.0;
if (mRightDerivative < Infinity) {
qn = 0.5;
un = (TData(3.0)/(GetXValue(n-1)-GetXValue(n-2))) *
( mRightDerivative -
( GetValueFromIndex(n-1) - GetValueFromIndex(n-2)) /
( GetXValue(n-1) - GetXValue(n-2)));
}
mSplineTable[n-1]=((un-qn*u[n-2])/(qn*mSplineTable[n-2]+1));
for(int k=n-1; k>=1; k--)
{
mSplineTable[k-1]=mSplineTable[k-1]*mSplineTable[k]+u[k-1];
}
}
/**
* Member protected method
* Performs the actual 3rd order spline interpolation algorithm
*/
template <class TX,class TY>
TY BPFTmpl<TX,TY>::BPFSplineInt(const TX& x) const
{
int klo=1;
int khi=mArray.Size();
while(khi-klo>1)
{
int k=(khi+klo)>>1;
if(GetXValue(k-1)>x) khi=k;
else klo=k;
}
TX h=GetXValue(khi-1)-GetXValue(klo-1);
CLAM_ASSERT(h!=0.0, "Error interpolating Spline");
TX a=(GetXValue(khi-1)-x)/h;
TX b=(x-GetXValue(klo-1))/h;
return (a*GetValueFromIndex(klo-1)+b*GetValueFromIndex(khi-1)+((a*a*a-a)*
mSplineTable[klo-1]+(b*b*b-b)*mSplineTable[khi-1])*(h*h)/6);
}
template <class TX,class TY>
void BPFTmpl<TX,TY>::StoreOn(Storage & storage) const
{
XMLComponentAdapter adapterInt(meInterpolation,"Interpolation",true);
storage.Store(adapterInt);
XMLComponentAdapter adapter(mArray, "Points", true);
storage.Store(adapter);
}
template <class TX,class TY>
void BPFTmpl<TX,TY>::LoadFrom(Storage & storage)
{
XMLComponentAdapter adapterInt(meInterpolation,"Interpolation",true);
storage.Load(adapterInt);
XMLComponentAdapter adapter(mArray, "Points", true);
storage.Load(adapter);
}
} // namespace CLAM
#endif // _BPFTmplDef_
|