This file is indexed.

/usr/include/CLAM/AudioDescriptors.hxx is in libclam-dev 1.4.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __AUDIODescriptors_H__
#define __AUDIODescriptors_H__

#include <typeinfo>
#include "Descriptor.hxx"
#include "DataTypes.hxx"
/*
 * This class holds Descriptors computed from Audio data
 *
 *
 */

namespace CLAM {

	class Audio;

	class AudioDescriptors : public DescriptorAbs {
	public:
		DYNAMIC_TYPE_USING_INTERFACE (AudioDescriptors, 8, DescriptorAbs);
		
		/** The mean value of the absolute value of the audio samples amplitude. 
		 *  The result is in signal units.
		 *  @see Stats::GetMean
		 */
		DYN_ATTRIBUTE (0, public, TData, Mean);
		/** The variance of audio samples amplitude. 
		 * The result is in signal difference squared units.
		 *  @see Stats::GetVariance
		 */
		DYN_ATTRIBUTE (1, public, TData, Variance);
		/**
		 * The temporal centroid is time where signal energy
		 * is "concentrated". For a "silence" signal the centroid will be 
		 * placed in the middle of the signal.
		 * It is computed by computing the statistical centroid over
		 * the absolute value of the signal.
		 * Measured in seconds.
		 * @see Stats::GetCentroid
		 */
		DYN_ATTRIBUTE (2, public, TData, TemporalCentroid);
		
		/**
		 * The log-attack time is the (base 10) logarithm of the
		 * rise time. For a silent signal, log-attack time is
		 * -5. Measured in log10(seconds).
		 */
		DYN_ATTRIBUTE (3, public, TData, LogAttackTime);

		/**
		 * The squared sum of audio samples amplitudes. 
		 * This measure is not limited to the range [0,1].
		 * Measured in squared signal units.
		 * @see Stats::GetEnergy
		 */
		DYN_ATTRIBUTE (4, public, TData, Energy);

		/**
		 * The zero-crossing rate is a measure of the number of time
		 * the signal value cross the zero axe, averaged over the
		 * whole signal. Measured in crossings/second.
		 */
		DYN_ATTRIBUTE (5, public, TData, ZeroCrossingRate);

		/**
		 * The rise time is the time duration between the signal
		 * reached 2% of it maximum value to the time it reaches 80%
		 * of its maximum value. For a silent signal, rise time is
		 * 0. Measured in seconds.
		 */
		DYN_ATTRIBUTE (6, public, TData, RiseTime);

		/**
		 * The temporal decrease is a measure of the amount of
		 * decrease in the signal energy. Measured in dB per
		 * seconds??
		 */
		DYN_ATTRIBUTE (7, public, TData, Decrease);

	public:

		AudioDescriptors(Audio* pAudio);
		AudioDescriptors(TData initVal);

		const Audio* GetpAudio() const;
		void SetpAudio(Audio* pAudio);
		void ConcreteCompute();

	private:
		void DefaultInit();
		void CopyInit(const AudioDescriptors & copied);
		
		TData ComputeZeroCrossingRate();
		TData ComputeAttackTime();
		TData ComputeLogAttackTime();
		TData ComputeDecrease();

		
	private:
		const Audio* mpAudio;
		static const TData mEpsilon;
		
		bool mIsAttackTimeComputed;
		TData mComputedAttackTime;
	};

	

AudioDescriptors operator * (const AudioDescriptors& a,TData mult) ;
AudioDescriptors operator * (TData mult, const AudioDescriptors& a) ;
AudioDescriptors operator * (const AudioDescriptors& a,const AudioDescriptors& b) ;
AudioDescriptors operator + (const AudioDescriptors& a,const AudioDescriptors& b) ;
AudioDescriptors operator - (const AudioDescriptors& a,const AudioDescriptors& b) ;
AudioDescriptors operator / (const AudioDescriptors& a,TData div);

template<>
inline AudioDescriptors CLAM_min (const AudioDescriptors & a,const AudioDescriptors & b)
{
	AudioDescriptors tmpD(a);

	if (a.HasMean() && b.HasMean() )
	{
		if(b.GetMean()<a.GetMean())
			tmpD.SetMean(b.GetMean() );
	}
	if (a.HasTemporalCentroid() && b.HasTemporalCentroid() )
	{
		if(b.GetTemporalCentroid()<a.GetTemporalCentroid())
			tmpD.SetTemporalCentroid(b.GetTemporalCentroid() );
	}
	if (a.HasEnergy() && b.HasEnergy() )
	{
		if(b.GetEnergy()<a.GetEnergy())
			tmpD.SetEnergy(b.GetEnergy() );
	}
	if(a.HasVariance() && b.HasVariance() )
	{
		if(b.GetVariance()<a.GetVariance())
			tmpD.SetVariance(b.GetVariance() );
	}
	if(a.HasZeroCrossingRate() && b.HasZeroCrossingRate() )
	{
		if(b.GetZeroCrossingRate()<a.GetZeroCrossingRate())
			tmpD.SetZeroCrossingRate(b.GetZeroCrossingRate() );
	}
	if(a.HasRiseTime() && b.HasRiseTime() )
	{
		if(b.GetRiseTime()<a.GetRiseTime())
			tmpD.SetRiseTime(b.GetRiseTime() );
	}
	if(a.HasLogAttackTime() && b.HasLogAttackTime() )
	{
		if(b.GetLogAttackTime()<a.GetLogAttackTime())
			tmpD.SetLogAttackTime(b.GetLogAttackTime() );
	}
	if(a.HasDecrease() && b.HasDecrease() )
	{
		if(b.GetDecrease()<a.GetDecrease())
			tmpD.SetDecrease(b.GetDecrease() );
	}
	return tmpD;


}

template<>
inline AudioDescriptors CLAM_max (const AudioDescriptors & a,const AudioDescriptors & b)
{
	AudioDescriptors tmpD(a);

	if (a.HasMean() && b.HasMean() )
	{
		if(b.GetMean()>a.GetMean())
			tmpD.SetMean(b.GetMean() );
	}
	if (a.HasTemporalCentroid() && b.HasTemporalCentroid() )
	{
		if(b.GetTemporalCentroid()>a.GetTemporalCentroid())
			tmpD.SetTemporalCentroid(b.GetTemporalCentroid() );
	}
	if (a.HasEnergy() && b.HasEnergy() )
	{
		if(b.GetEnergy()>a.GetEnergy())
			tmpD.SetEnergy(b.GetEnergy() );
	}
	if(a.HasVariance() && b.HasVariance() )
	{
		if(b.GetVariance()>a.GetVariance())
			tmpD.SetVariance(b.GetVariance() );
	}
	if(a.HasZeroCrossingRate() && b.HasZeroCrossingRate() )
	{
		if(b.GetZeroCrossingRate()>a.GetZeroCrossingRate())
			tmpD.SetZeroCrossingRate(b.GetZeroCrossingRate() );
	}
	if(a.HasRiseTime() && b.HasRiseTime() )
	{
		if(b.GetRiseTime()>a.GetRiseTime())
			tmpD.SetRiseTime(b.GetRiseTime() );
	}
	if(a.HasLogAttackTime() && b.HasLogAttackTime() )
	{
		if(b.GetLogAttackTime()>a.GetLogAttackTime())
			tmpD.SetLogAttackTime(b.GetLogAttackTime() );
	}
	if(a.HasDecrease() && b.HasDecrease() )
	{
		if(b.GetDecrease()>a.GetDecrease())
			tmpD.SetDecrease(b.GetDecrease() );
	}
	return tmpD;

}


};


#endif /* __AUDIODescriptors_H__ */