/usr/include/botan-1.10/botan/pubkey.h is in libbotan1.10-dev 1.10.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /*
* Public Key Interface
* (C) 1999-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_PUBKEY_H__
#define BOTAN_PUBKEY_H__
#include <botan/pk_keys.h>
#include <botan/pk_ops.h>
#include <botan/symkey.h>
#include <botan/rng.h>
#include <botan/eme.h>
#include <botan/emsa.h>
#include <botan/kdf.h>
namespace Botan {
/**
* The two types of signature format supported by Botan.
*/
enum Signature_Format { IEEE_1363, DER_SEQUENCE };
/**
* Enum marking if protection against fault attacks should be used
*/
enum Fault_Protection {
ENABLE_FAULT_PROTECTION,
DISABLE_FAULT_PROTECTION
};
/**
* Public Key Encryptor
*/
class BOTAN_DLL PK_Encryptor
{
public:
/**
* Encrypt a message.
* @param in the message as a byte array
* @param length the length of the above byte array
* @param rng the random number source to use
* @return encrypted message
*/
SecureVector<byte> encrypt(const byte in[], size_t length,
RandomNumberGenerator& rng) const
{
return enc(in, length, rng);
}
/**
* Encrypt a message.
* @param in the message
* @param rng the random number source to use
* @return encrypted message
*/
SecureVector<byte> encrypt(const MemoryRegion<byte>& in,
RandomNumberGenerator& rng) const
{
return enc(&in[0], in.size(), rng);
}
/**
* Return the maximum allowed message size in bytes.
* @return maximum message size in bytes
*/
virtual size_t maximum_input_size() const = 0;
PK_Encryptor() {}
virtual ~PK_Encryptor() {}
private:
PK_Encryptor(const PK_Encryptor&) {}
PK_Encryptor& operator=(const PK_Encryptor&) { return *this; }
virtual SecureVector<byte> enc(const byte[], size_t,
RandomNumberGenerator&) const = 0;
};
/**
* Public Key Decryptor
*/
class BOTAN_DLL PK_Decryptor
{
public:
/**
* Decrypt a ciphertext.
* @param in the ciphertext as a byte array
* @param length the length of the above byte array
* @return decrypted message
*/
SecureVector<byte> decrypt(const byte in[], size_t length) const
{
return dec(in, length);
}
/**
* Decrypt a ciphertext.
* @param in the ciphertext
* @return decrypted message
*/
SecureVector<byte> decrypt(const MemoryRegion<byte>& in) const
{
return dec(&in[0], in.size());
}
PK_Decryptor() {}
virtual ~PK_Decryptor() {}
private:
PK_Decryptor(const PK_Decryptor&) {}
PK_Decryptor& operator=(const PK_Decryptor&) { return *this; }
virtual SecureVector<byte> dec(const byte[], size_t) const = 0;
};
/**
* Public Key Signer. Use the sign_message() functions for small
* messages. Use multiple calls update() to process large messages and
* generate the signature by finally calling signature().
*/
class BOTAN_DLL PK_Signer
{
public:
/**
* Sign a message.
* @param in the message to sign as a byte array
* @param length the length of the above byte array
* @param rng the rng to use
* @return signature
*/
SecureVector<byte> sign_message(const byte in[], size_t length,
RandomNumberGenerator& rng);
/**
* Sign a message.
* @param in the message to sign
* @param rng the rng to use
* @return signature
*/
SecureVector<byte> sign_message(const MemoryRegion<byte>& in,
RandomNumberGenerator& rng)
{ return sign_message(&in[0], in.size(), rng); }
/**
* Add a message part (single byte).
* @param in the byte to add
*/
void update(byte in) { update(&in, 1); }
/**
* Add a message part.
* @param in the message part to add as a byte array
* @param length the length of the above byte array
*/
void update(const byte in[], size_t length);
/**
* Add a message part.
* @param in the message part to add
*/
void update(const MemoryRegion<byte>& in) { update(&in[0], in.size()); }
/**
* Get the signature of the so far processed message (provided by the
* calls to update()).
* @param rng the rng to use
* @return signature of the total message
*/
SecureVector<byte> signature(RandomNumberGenerator& rng);
/**
* Set the output format of the signature.
* @param format the signature format to use
*/
void set_output_format(Signature_Format format) { sig_format = format; }
/**
* Construct a PK Signer.
* @param key the key to use inside this signer
* @param emsa the EMSA to use
* An example would be "EMSA1(SHA-224)".
* @param format the signature format to use
* @param prot says if fault protection should be enabled
*/
PK_Signer(const Private_Key& key,
const std::string& emsa,
Signature_Format format = IEEE_1363,
Fault_Protection prot = ENABLE_FAULT_PROTECTION);
~PK_Signer() { delete op; delete verify_op; delete emsa; }
private:
bool self_test_signature(const MemoryRegion<byte>& msg,
const MemoryRegion<byte>& sig) const;
PK_Signer(const PK_Signer&) {}
PK_Signer& operator=(const PK_Signer&) { return *this; }
PK_Ops::Signature* op;
PK_Ops::Verification* verify_op;
EMSA* emsa;
Signature_Format sig_format;
};
/**
* Public Key Verifier. Use the verify_message() functions for small
* messages. Use multiple calls update() to process large messages and
* verify the signature by finally calling check_signature().
*/
class BOTAN_DLL PK_Verifier
{
public:
/**
* Verify a signature.
* @param msg the message that the signature belongs to, as a byte array
* @param msg_length the length of the above byte array msg
* @param sig the signature as a byte array
* @param sig_length the length of the above byte array sig
* @return true if the signature is valid
*/
bool verify_message(const byte msg[], size_t msg_length,
const byte sig[], size_t sig_length);
/**
* Verify a signature.
* @param msg the message that the signature belongs to
* @param sig the signature
* @return true if the signature is valid
*/
bool verify_message(const MemoryRegion<byte>& msg,
const MemoryRegion<byte>& sig)
{
return verify_message(&msg[0], msg.size(),
&sig[0], sig.size());
}
/**
* Add a message part (single byte) of the message corresponding to the
* signature to be verified.
* @param in the byte to add
*/
void update(byte in) { update(&in, 1); }
/**
* Add a message part of the message corresponding to the
* signature to be verified.
* @param msg_part the new message part as a byte array
* @param length the length of the above byte array
*/
void update(const byte msg_part[], size_t length);
/**
* Add a message part of the message corresponding to the
* signature to be verified.
* @param in the new message part
*/
void update(const MemoryRegion<byte>& in)
{ update(&in[0], in.size()); }
/**
* Check the signature of the buffered message, i.e. the one build
* by successive calls to update.
* @param sig the signature to be verified as a byte array
* @param length the length of the above byte array
* @return true if the signature is valid, false otherwise
*/
bool check_signature(const byte sig[], size_t length);
/**
* Check the signature of the buffered message, i.e. the one build
* by successive calls to update.
* @param sig the signature to be verified
* @return true if the signature is valid, false otherwise
*/
bool check_signature(const MemoryRegion<byte>& sig)
{
return check_signature(&sig[0], sig.size());
}
/**
* Set the format of the signatures fed to this verifier.
* @param format the signature format to use
*/
void set_input_format(Signature_Format format);
/**
* Construct a PK Verifier.
* @param pub_key the public key to verify against
* @param emsa the EMSA to use (eg "EMSA3(SHA-1)")
* @param format the signature format to use
*/
PK_Verifier(const Public_Key& pub_key,
const std::string& emsa,
Signature_Format format = IEEE_1363);
~PK_Verifier() { delete op; delete emsa; }
private:
PK_Verifier(const PK_Verifier&) {}
PK_Verifier& operator=(const PK_Verifier&) { return *this; }
bool validate_signature(const MemoryRegion<byte>& msg,
const byte sig[], size_t sig_len);
PK_Ops::Verification* op;
EMSA* emsa;
Signature_Format sig_format;
};
/**
* Key used for key agreement
*/
class BOTAN_DLL PK_Key_Agreement
{
public:
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
* @param params_len the length of params in bytes
*/
SymmetricKey derive_key(size_t key_len,
const byte in[],
size_t in_len,
const byte params[],
size_t params_len) const;
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
* @param params_len the length of params in bytes
*/
SymmetricKey derive_key(size_t key_len,
const MemoryRegion<byte>& in,
const byte params[],
size_t params_len) const
{
return derive_key(key_len, &in[0], in.size(),
params, params_len);
}
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
*/
SymmetricKey derive_key(size_t key_len,
const byte in[], size_t in_len,
const std::string& params = "") const
{
return derive_key(key_len, in, in_len,
reinterpret_cast<const byte*>(params.data()),
params.length());
}
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param params extra derivation params
*/
SymmetricKey derive_key(size_t key_len,
const MemoryRegion<byte>& in,
const std::string& params = "") const
{
return derive_key(key_len, &in[0], in.size(),
reinterpret_cast<const byte*>(params.data()),
params.length());
}
/**
* Construct a PK Key Agreement.
* @param key the key to use
* @param kdf name of the KDF to use (or 'Raw' for no KDF)
*/
PK_Key_Agreement(const PK_Key_Agreement_Key& key,
const std::string& kdf);
~PK_Key_Agreement() { delete op; delete kdf; }
private:
PK_Key_Agreement(const PK_Key_Agreement_Key&) {}
PK_Key_Agreement& operator=(const PK_Key_Agreement&) { return *this; }
PK_Ops::Key_Agreement* op;
KDF* kdf;
};
/**
* Encryption with an MR algorithm and an EME.
*/
class BOTAN_DLL PK_Encryptor_EME : public PK_Encryptor
{
public:
size_t maximum_input_size() const;
/**
* Construct an instance.
* @param key the key to use inside the decryptor
* @param eme the EME to use
*/
PK_Encryptor_EME(const Public_Key& key,
const std::string& eme);
~PK_Encryptor_EME() { delete op; delete eme; }
private:
SecureVector<byte> enc(const byte[], size_t,
RandomNumberGenerator& rng) const;
PK_Ops::Encryption* op;
const EME* eme;
};
/**
* Decryption with an MR algorithm and an EME.
*/
class BOTAN_DLL PK_Decryptor_EME : public PK_Decryptor
{
public:
/**
* Construct an instance.
* @param key the key to use inside the encryptor
* @param eme the EME to use
*/
PK_Decryptor_EME(const Private_Key& key,
const std::string& eme);
~PK_Decryptor_EME() { delete op; delete eme; }
private:
SecureVector<byte> dec(const byte[], size_t) const;
PK_Ops::Decryption* op;
const EME* eme;
};
/*
* Typedefs for compatability with 1.8
*/
typedef PK_Encryptor_EME PK_Encryptor_MR_with_EME;
typedef PK_Decryptor_EME PK_Decryptor_MR_with_EME;
}
#endif
|