This file is indexed.

/usr/include/BALL/MATHS/plane3.h is in libball1.4-dev 1.4.1+20111206-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_MATHS_PLANE3_H
#define BALL_MATHS_PLANE3_H

#ifdef BALL_HAS_IEEEFP_H
#	include <ieeefp.h>
#endif

#include <math.h>
#include <iostream>

#ifndef BALL_MATHS_LINE3_H
#	include <BALL/MATHS/line3.h>
#endif

#ifndef BALL_MATHS_VECTOR3_H
#	include <BALL/MATHS/vector3.h>
#endif

#ifndef BALL_MATHS_COMMON_H
#	include <BALL/MATHS/common.h>
#endif

namespace BALL 
{
	/** \defgroup Plane Plane in three-dimensional space.
		\ingroup GeometricObjects
	 */
	//@{
	
	template <typename T>
	class TPlane3;

	/** @name Storers
	 		Stream operators for class TPlane3
	*/
	//@{
	template <typename T>
	std::istream& operator >> (std::istream& s, TPlane3<T>& plane);

	template <typename T>
	std::ostream& operator << (std::ostream& s, const TPlane3<T>& plane);
	//@}

	/** Threedimensional plane.
			A plane is defined by a point and its normal.
	*/
	template <typename T>
	class TPlane3
	{
		public:

		BALL_CREATE(TPlane3<T>)

		/**	@name	Constructors and Destructors
		*/
		//@{

		/**	Default constructor.
				This method creates a new TPlane3 object. The two components
				are initialized to <tt>(T)0</tt>.
		*/
		TPlane3()
			
			:	p(),
				n()
		{
		}

		/**	Copy constructor.
				Create a new TPlane3 object from another.
				@param plane the TPlane3 object to be copied
		*/	
		TPlane3(const TPlane3& plane)
			
			:	p(plane.p),
				n(plane.n)
		{
		}

		/**	Detailed constructor.
				Create a new instances of TPlane3 from a point and the normal.
				@param	point assigned to <tt>p</tt>
				@param	normal assigned to <tt>n</tt>
		*/
		TPlane3(const TVector3<T>& point, const TVector3<T>& normal)
			
			:	p(point),
				n(normal)
		{
		}

		/**	Detailed constructor.
				Create a new instance of TPlane3 from three points.
				@param	a assigned to <tt>p</tt>
				@param	a, b, c are used to calculate the normal <tt>n</tt>
		*/
		TPlane3(const TVector3<T>& a, const TVector3<T>& b, const TVector3<T>& c)
			
			:	p(a),
				n((a - b) % (b - c))
		{
		}

		/**	Constructor.
		 *	Create a new TPlane3 object from four <tt>T</tt> values.
		 *	Form: COORDINATE (ax + by + cz + d = 0)
		 *	@param	a, b, c are used to calculate the normal <tt>n</tt> and the point <tt>p</tt>
		 *  @throw Exception::DivisionByZero if a == b == c == 0
		 */
		TPlane3(const T& a, const T& b, const T& c, const T& d)
		{
			n = TVector3<T>(a, b, c);
			if (a == 0 && b == 0 && c == 0)
			{
				throw Exception::DivisionByZero(__FILE__, __LINE__);			
			}
			if (!Maths::isZero(a))
			{
				p.set(-d / a, 0, 0);
			}
			else if (!Maths::isZero(b))
			{
				p.set(0, -d / b, 0);
			}
			else if (!Maths::isZero(c))
			{
				p.set(0, 0, -d / c);
			}
		}

		/**	Destructor.	
				Destructs the TPlane3 object. As there are no dynamic
				data structures, nothing happens.
		*/
		virtual ~TPlane3()
			
		{
		}

		/**	Clear method.
				The values are set to 0.
		*/
		virtual void clear() 
			
		{
			n.clear();
			p.clear();
		}

		//@}

		/**	@name	Assignment
		*/
		//@{

		///
		void swap(TPlane3& plane)	
		{
			TVector3<T> temp_point(p);
			p = plane.p;
			plane.p = temp_point;

			temp_point = n;
			n = plane.n;
			plane.n = temp_point;
		}

		/**	Swap the contents of two instances of planes.
				@param vector the plane to swap contents with
				@param bool ignored - just for interface consistency
		*/
		void set(const TPlane3& plane)
			
		{
			p = plane.p;
			n = plane.n;
		}

		/**	Assign from a point and a normal.
				@param	point the new point
				@param	normal the new normal
		*/
		void set(const TVector3<T>& point, const TVector3<T>& normal)
			
		{
			p = point;
			n = normal;
		}

		/**	Assign from three points.
				@param a the first point
				@param b the second point
				@param c the third point
		*/
		void set(const TVector3<T>& a, const TVector3<T>& b, const TVector3<T>& c)
			
		{
				p = a;
				n = (a - b) % (b - c);
		}

		/**	Assignment operator.
				Assign the components from another instance of plane.
				@param plane the plane to assign from
		**/
		TPlane3& operator = (const TPlane3& plane)
			
		{
			p = plane.p;
			n = plane.n;

			return *this;
		}

		/**	Assign to another instance of Plane3.
				Assigns the components to another plane.
				@param plane the plane to be assigned to
		*/
		void get(TPlane3& plane) const
			
		{
			plane.p = p;
			plane.n = n;
		}

		/**	Assign to a point and a normal.
				@param point the point to be assigned to
				@param normal the normal to be assigned to
		*/
		void get(TVector3<T>& point, TVector3<T>& normal) const
			
		{
			point = p;
			normal = n;
		}
		//@}

		/**	@name	Accessors
		*/
		//@{

		/**	Normalize the the normal of the plane.
		 *	The normal is scaled with its length:
		 *	\f$\{x|y|z\} *= \sqrt{x^2 + y^2 + z^2}\f$.
		 *	@throw Exception::DivisionByZero if the length of the normal is 0
		 */
		void normalize()
		{
			T length = n.getLength();
			// throw an exception on zero length normal
			if (length == 0.0)
			{
				throw Exception::DivisionByZero(__FILE__, __LINE__);
			}

			n /= length;
		}

		/**	Hessify the plane.
				The normal is scaled with its length:
				\f$\{x|y|z\} *= \sqrt{x^2 + y^2 + z^2}\f$.
				If the dot product of the point with the normal
				is less then zero, the normal is negated.
		*/
		void hessify()
			
		{
			normalize();
      if (Maths::isLess(n * p, 0))
      {
        n.negate();
			}
		}

		//@}

		/**	@name	Predicates
		*/
		//@{

		/**	Equality operator.
				@return bool, <b>true</b> if all components are equal, <b>false</b> otherwise
		*/
		bool operator == (const TPlane3& plane) const
			
		{
			return (p == plane.p && n == plane.n);
		}

		/**	Inequality operator.
				@return bool, <b>false</b> if all components are equal, <b>true</b> otherwise
		*/
		bool operator != (const TPlane3& plane) const
			
		{
			return (p != plane.p || n != plane.n);
		}

		/**	Test whether a given point is a member of the plane.
				@param point the point to be tested
				@return bool, <b>true</b> or <b>false</b>
		*/
		bool has(const TVector3<T>& point) const
			
		{
			return Maths::isZero(n * (point - p));
		}

		/**	Test whether a given line is a member of the plane.
				@param line the line to be tested
				@return bool, <b>true</b> or <b>false</b>
		*/
		bool has(const TLine3<T>& line) const
			
		{
			return (Maths::isZero(n * line.d) && has(line.p));
		}
		//@}

		/**	@name	Debugging and Diagnostics
		*/
		//@{

		/**	Test whether instance is valid.
				always retruns true
				@return bool <b>true</b>
		*/
		bool isValid() const
			
		{
			return true;
		}

		/** Internal state dump.
				Dump the current internal state of {\em *this} to 
				the output ostream <b>  s </b> with dumping depth <b>  depth </b>.
				@param   s - output stream where to output the internal state of {\em *this}
				@param   depth - the dumping depth
		*/
		void dump(std::ostream& s = std::cout, Size depth = 0) const
			
		{
			BALL_DUMP_STREAM_PREFIX(s);

			BALL_DUMP_HEADER(s, this, this);

			BALL_DUMP_DEPTH(s, depth);
			s << "  position: " << p << std::endl;

			BALL_DUMP_DEPTH(s, depth);
			s << "  normal: " << n << std::endl;

			BALL_DUMP_STREAM_SUFFIX(s);
		}
		//@}

		/**	@name	Attributes
		*/
		//@{
		/**	The point
		*/
		TVector3<T> p;

		/**	The normal
		*/
		TVector3<T> n;

		//@}
	};
//@}

	/**	Input operator
			reads in two instances of TVector3: <b>p, n</b>
	*/
	template <typename T>
	std::istream& operator >> (std::istream& s, TPlane3<T>& plane)
		
	{
		char c;
		s >> c >> plane.p >>  plane.n >> c;
		return s;
	}

	/**	Output operator
			Prints two instances of TVector3: <b>p, n</b>
	*/
	template <typename T>
	std::ostream& operator << (std::ostream& s, const TPlane3<T>& plane)
		
	{
		return (s << '(' << plane.p << ' '  << plane.n << ')');
	}
	
	/**	Default plane class of type <b>float</b>
	 		\ingroup Plane
	*/
	typedef TPlane3<float> Plane3;
	
} // namespace BALL

#endif // BALL_MATHS_PLANE3_H