This file is indexed.

/usr/include/BALL/MATHS/angle.h is in libball1.4-dev 1.4.1+20111206-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_MATHS_ANGLE_H
#define BALL_MATHS_ANGLE_H

#ifndef BALL_COMMON_EXCEPTION_H
# include <BALL/COMMON/exception.h>
#endif

#ifndef BALL_COMMON_DEBUG_H
# include <BALL/COMMON/debug.h>
#endif

#ifndef BALL_COMMON_CREATE_H
# include <BALL/COMMON/create.h>
#endif

#ifndef BALL_MATHS_COMMON_H
#	include <BALL/MATHS/common.h>
#endif

namespace BALL 
{
	/** \defgroup Angle Representation of angles.
	 	  class  \link BALL::TAngle TAngle \endlink  and class  \link Angle Angle \endlink 
	 		\ingroup Primitives
	 */
	//@{
	template <typename T>
	class TAngle;

	template <typename T>
	BALL_INLINE
	TAngle<T> operator * (const T& val, const TAngle<T>& angle);

	template <typename T>
	BALL_INLINE
	TAngle<T> operator + (const T& val, const TAngle<T>& angle);

	template <typename T>
	BALL_INLINE
	TAngle<T> operator - (const T& val, const TAngle<T>& angle);

	/**	Generic Angle Class.
			Use this class to describe angles. The TAngle class permits the conversion
			from degree to radians and is the return type of all functions used to calculate
			angles.
	*/
	template <typename T>
	class TAngle
	{
		public:

		BALL_CREATE(TAngle<T>)

		/**	@name	Enums
		*/
		//@{

		/** form of the angle range:
				<tt>RANGE__UNLIMITED = 0</tt> no limitations
				<tt>RANGE__UNSIGNED  = 1</tt> 0 <= angle <= 360, 0 <= angle <= PI * 2
				<tt>RANGE__SIGNED    = 2</tt> -180 <= angle <= 180, -PI <= angle <= PI
		*/
		enum Range
		{
			// no limitations
			RANGE__UNLIMITED = 0, 
			// 0 <= angle <= 360, 0 <= angle <= (Constants::PI * 2)
			RANGE__UNSIGNED  = 1, 
			// -180 <= angle <= 180, -Constants::PI <= angle <= Constants::PI
			RANGE__SIGNED    = 2 
		};
		//@}
		/**	@name	Constructors and Destructors
		*/
		//@{

		/**	Default constructor.
				Creates a new angle object. Its value is set to 0.
		*/
		TAngle();

		/**	Copy constructor.
				Create a copy of a TAngle object. Copies are always
				shallow.
				@param	angle the object to be copied
		*/
		TAngle(const TAngle& angle);

		/**	Detailed constructor.
				Create a new angle object and set its value to 
				<tt>new_value</tt>. <tt>radian</tt> determines whether <tt>new_value</tt>
				is in radians or in degrees.
				@param	new_value the value of the angle object
				@param	radian <b>true</b> if <tt>new_value</tt> is in radians, <tt>false</tt> otherwise 
		*/
		explicit TAngle(const T& new_value, bool radian = true);

		/**	Destructor.
		*/
		virtual ~TAngle()
		{
		}

		/** Clear method
				The value is set to 0.
		*/
		virtual void clear()
		{
			value = (T)0;
		}
		//@}

		/**	@name	Assignment
		*/
		//@{

		/**	Swap the contents of two angles.
		*/
		void swap(TAngle& angle);

		/**	Assign a new value to the angle.
				<tt>radian</tt> determines whether <tt>new_value</tt>
				is in radians or in degrees.
				@param	new_value the value of the angle object
				@param	radian <b>true</b> if <tt>new_value</tt> is in radians, <tt>false</tt> otherwise 
		*/
		void set(const T& new_value, bool radian = true);

		/**	Assign an Angle object from another.
				@param	angle the angle object to be assigned from
		*/
		void set(const TAngle& angle);

		/**	Assignment operator
		*/
		TAngle& operator = (const TAngle& angle);

		/**	Assignment operator for floats.
				Assign a float value to the angle.
				The assigned value has to be in radians!
				@param	new_value the new value
		*/
		TAngle& operator = (const T& new_value);

		/**	Assign the value to another angle.
				@param	angle the angle to assign the value to
		*/
		void get(TAngle& angle) const;

		/**	Assign the value to a variable of type <tt>T</tt>.
				@param	val the variable to assign the value to
				@param	radian if set to <tt>true</tt> assigns the value in radians (default).
		*/
		void get(T& val, bool radian = true) const;

		//@}
		/**	@name	Accessors
		*/
		//@{

		/** Cast operator
				@return value in radians
		*/
		operator T () const;

		/** Return the value of the angle
				@return value in radians
		*/
		T toRadian() const
	;

		/** Calculate radians from degrees
				@param degree the value in degrees
				@return T the value in radians
		*/
		static T toRadian(const T& degree);

		/** Return the value of the angle
				@return value in degrees
		*/
		T toDegree() const;

		/** Calculate degrees from radians
				@param radian the value in radians
				@return T the value in degrees
		*/
		static T toDegree(const T& radian);

		/**	Normalize the angle over a given range.
				<tt>RANGE__UNLIMITED = 0</tt> no limitations.
				<tt>RANGE__UNSIGNED  = 1</tt> \f$0 \le \mathtt{angle} \le 360, 0 \le angle \le 2 \pi\f$.
				<tt>RANGE__SIGNED    = 2</tt> \f$-180 \le \mathtt{angle} \le 180, -\pi \le \mathtt{angle} \le \pi\f$.
				@param range the range of the angle
		*/		
		void normalize(Range range);

		/**  Negate the angle
		*/
		void negate();

		/**	Positive sign.
		*/
		TAngle operator + () const;

		/**	Negative sign.
		*/
		TAngle operator - () const;

		/**	Addition operator.
				@param angle the angle to add
				@return TAngle, {\em *this}
		*/
		TAngle& operator += (const TAngle& angle);

		/**	Add a value to this angle.
				@param val the value to add
				@return TAngle, {\em *this}
		*/
		TAngle& operator += (const T& val);

		/**	Addition operator.
				@param angle the angle to add
				@return TAngle, the new angle
		*/
		TAngle operator + (const TAngle& angle);

		/**	Substraction operator.
				@param angle the angle to substract
				@return TAngle, {\em *this}
		*/
		TAngle& operator -= (const TAngle& angle);

		/**	Substract a value from this angle.
				@param val the value to substract
				@return TAngle, {\em *this}
		*/
		TAngle& operator -= (const T& val);

		/**	Subtraction an angle from this angle.
				@param angle the angle to substract
				@return TAngle, the new angle
		*/
		TAngle operator - (const TAngle& angle);

		/**	Multiply an angle with this angle.
				@param angle the angle to multiply by
				@return TAngle, {\em *this}
		*/
		TAngle& operator *= (const TAngle& angle);

		/**	Multiply a value with this angle.
				@param val the value to multiply by
				@return TAngle, {\em *this}
		*/
		TAngle& operator *= (const T& val);

		/**	Division operator.
				@param angle the angle to divide by
				@return TAngle, {\em *this}
				@throw  Exception::DivisionByZero if angle is zero
		*/
		TAngle& operator /= (const TAngle& angle);

		/**	Divide this angle by a value.
				@param val the angle to divide by
				@return TAngle, {\em *this}
				@throw  Exception::DivisionByZero if val is zero
		*/
		TAngle& operator /= (const T& val);

		/**	Divide this angle by a value.
				@param val the angle to divide by
				@return TAngle, the new angle
				@throw  Exception::DivisionByZero if val is zero
		*/
		TAngle operator / (const TAngle& val);

		//@}
		/**	@name	Predicates
		*/
		//@{

		/**	Equality operator.
				This test uses Maths::isEqual instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if the two angles are equal
		*/
		bool operator == (const TAngle& angle) const;

		/**	Inequality operator
				This test uses Maths::isNotEqual instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if the two angles are not equal
		*/
		bool operator != (const TAngle& angle) const;

		/**	Is less operator.
				This test uses Maths::isLess instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if {\em *this} angle is smaller than <tt>value</tt>
		*/
		bool operator < (const TAngle& angle) const;

		/**	Is less operator.
				This test uses Maths::isLess instead of comparing the
				values directly.
				@param val the value to compare with
				@return bool, <b>true</b> if {\em *this} angle is smaller than <tt>value</tt>
		*/
		bool operator < (const T& val) const;

		/**	Is less or equal operator.
				This test uses Maths::isLessOrEqual instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if {\em *this} angle is smaller or equal than <tt>value</tt>
		*/
		bool operator <= (const TAngle& angle) const;

		/**	Is greater or equal operator.
				This test uses Maths::isGreaterOrEqual instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if {\em *this} angle is greater or equal than <tt>value</tt>
		*/
		bool operator >= (const TAngle& angle) const;

		/**	Is greater operator.
				This test uses Maths::isGreater instead of comparing the
				values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if {\em *this} angle is greater than <tt>value</tt>
		*/
		bool operator > (const TAngle& angle) const;

		/**	Test whether two angles are equivalent.
				Both angles are normalized and afterwards compared with Maths::isEqual
				instead of comparing the values directly.
				@param angle the angle to compare with
				@return bool, <b>true</b> if {\em *this} angle is equal to <tt>value</tt>
		*/
		bool isEquivalent(TAngle angle) const;

		//@}
		/**	@name	Debugging and Diagnostics
		*/
		//@{

		/**	Test whether instance is valid.
				Always returns true
				@return bool <b>true</b>
		*/
		bool isValid () const;

		/** Internal state dump.
				Dump the current internal state of {\em *this} to 
				the output ostream <b>  s </b> with dumping depth <b>  depth </b>.
				@param   s - output stream where to output the internal state of {\em *this}
				@param   depth - the dumping depth
		*/
		void dump(std::ostream& s = std::cout, Size depth = 0) const;

		//@}
		/**	@name	Attributes
		*/
		//@{

		/**	The value
		*/
		T value;

		//@}
	};
	//@}

	template <typename T>
	TAngle<T>::TAngle()
		: value((T)0)
	{
	}

	template <typename T>
	TAngle<T>::TAngle(const TAngle& angle)
		:	value((T)angle.value)
	{
	}

	template <typename T>
	TAngle<T>::TAngle(const T& new_value, bool radian)
		:	value((radian == true)
			 ? (T)new_value 
			 : (T)BALL_ANGLE_DEGREE_TO_RADIAN((double)new_value))
	{
	}

	template <typename T>
	void TAngle<T>::swap(TAngle& angle)
	{
		T temp = value;
		value = angle.value;
		angle.value = temp;
	}

	template <typename T>
	void TAngle<T>::set(const TAngle& angle)
	{
		value = angle.value;
	}

	template <typename T>
	void TAngle<T>::set(const T& new_value, bool radian)
	{
		value = (radian == true)
			 ? new_value 
			 : BALL_ANGLE_DEGREE_TO_RADIAN(new_value);
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator = (const TAngle& angle)
	{
		value = angle.value;
		return *this;
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator = (const T& new_value)
	{
		value = new_value;
		return *this;
	}

	template <typename T>
	void TAngle<T>::get(TAngle& angle) const
	{
		angle.value = value;
	}

	template <typename T>
	void TAngle<T>::get(T& val, bool radian) const
	{
		val = (radian == true)
					 ? value 
					 : BALL_ANGLE_RADIAN_TO_DEGREE(value);
	}

	template <typename T>
	TAngle<T>::operator T () const
	{
		return value;
	}

	template <typename T>
	T TAngle<T>::toRadian() const
	{
		return value;
	}

	template <typename T>
	T TAngle<T>::toRadian(const T& degree)
	{
		return BALL_ANGLE_DEGREE_TO_RADIAN(degree);
	}

	template <typename T>
	T TAngle<T>::toDegree() const
	{
		if (value == (T) 0.0) return (T) 0.0;
		return BALL_ANGLE_RADIAN_TO_DEGREE(value);
	}

	template <typename T>
	T TAngle<T>::toDegree(const T& radian)
	{
		if (radian == (T) 0.0) return (T) 0.0;
		return BALL_ANGLE_RADIAN_TO_DEGREE(radian);
	}

	template <typename T>
	void TAngle<T>::normalize(Range range)
	{
		if (range == RANGE__UNLIMITED)
		{
			return;
		}

		long mod_factor = (long)(value / (2 * Constants::PI));
		value -= mod_factor * (Constants::PI * 2);

		while (Maths::isGreater(value, (Constants::PI * 2)))
		{
			value -= (Constants::PI * 2);
		}
		while (Maths::isLess(value, -(Constants::PI * 2)))
		{
			value += (Constants::PI * 2);
		}
		if (range == RANGE__SIGNED) // invariant: -180 to 180:
		{
			if (Maths::isGreater(value, Constants::PI)) 
			{
				value -= (Constants::PI * 2);
			}
		} 
		else 
		{ // invariant: 0 to 360:
			if (Maths::isLess(value, 0)) 
			{
				value += (Constants::PI * 2);
			}
		}
	}

	template <typename T>
	void TAngle<T>::negate() 
	{
		value = -value;
	}

	template <typename T>
	TAngle<T> TAngle<T>::operator + () const 
	{
		return *this;
	}

	template <typename T>
	TAngle<T> TAngle<T>::operator - () const 
	{
		return TAngle(-value);
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator += (const TAngle& angle) 
	{
		value += angle.value;
		return *this;
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator += (const T& val) 
	{
		value += val;
		return *this;
	}

	template <typename T>
	TAngle<T> TAngle<T>::operator + (const TAngle& angle)
	{
		return TAngle(value + angle.value);
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator -= (const TAngle& angle)
	{
		value -= angle.value;
		return *this;
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator -= (const T& val)
	{
		value -= val;
		return *this;
	}

	template <typename T>
	TAngle<T> TAngle<T>::operator - (const TAngle& angle) 
	{
		return TAngle(value - angle.value);
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator *= (const TAngle& angle)
	{
		value *= angle.value;
		return *this;
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator *= (const T& val)
	{
		value *= val;
		return *this;
	}

	template <typename T>
	TAngle<T>& TAngle<T>::operator /= (const TAngle& angle)
	{
		if (angle.value == 0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		value /= angle.value;
		return *this;
	}


	template <typename T>
	TAngle<T>& TAngle<T>::operator /= (const T& val) 
	{
		if (val == 0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}

		value /= val;
		return *this;
	}


	template <typename T>
	TAngle<T> TAngle<T>::operator / (const TAngle<T>& val) 
	{
		if (val.value == 0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}

		return TAngle(value / val.value);
	}

	template <typename T>
	bool TAngle<T>::operator == (const TAngle& angle) const
	{
		return Maths::isEqual(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::operator != (const TAngle& angle) const 
	{
		return Maths::isNotEqual(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::operator < (const TAngle& angle) const
	{
		return Maths::isLess(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::operator < (const T& val) const
	{
		return Maths::isLess(value, val);
	}

	template <typename T>
	bool TAngle<T>::operator <= (const TAngle& angle) const
	{
		return Maths::isLessOrEqual(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::operator >= (const TAngle& angle) const 
	{
		return Maths::isGreaterOrEqual(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::operator > (const TAngle& angle) const 
		
	{
		return Maths::isGreater(value, angle.value);
	}

	template <typename T>
	bool TAngle<T>::isEquivalent(TAngle angle) const
	{
		TAngle this_angle(*this);

		this_angle.normalize(RANGE__UNSIGNED);
		angle.normalize(RANGE__UNSIGNED);

		return (this_angle == angle);
	}

	template <typename T>
	bool TAngle<T>::isValid() const 
	{
		return true;
	}

	template <typename T>
	void TAngle<T>::dump(std::ostream& s, Size depth) const
	{
		BALL_DUMP_STREAM_PREFIX(s);

		BALL_DUMP_HEADER(s, this, this);

		BALL_DUMP_DEPTH(s, depth);
		s << "  value: " << value << std::endl;

		BALL_DUMP_STREAM_SUFFIX(s);
	}

	/**	The Default Angle Type.
			If double precision is not needed, <tt>TAngle<float></tt> should
			be used. It is predefined as <tt>Angle</tt> for convenience.
	*/
	typedef TAngle<float> Angle;

	/**	Multiplication operator.
			Multiplies a number with an angle.
	*/
	template <typename T>
	BALL_INLINE
	TAngle<T> operator * (const T& val, const TAngle<T>& angle)
	{
		return TAngle<T>(val * angle.value);
	}

	/**	Plus operator.
			Adds a number with an angle (in rad!)
	*/
	template <typename T>
	BALL_INLINE
	TAngle<T> operator + (const T& val, const TAngle<T>& angle) 
	{
		return TAngle<T>(val + angle.value);
	}

	/**	Minus operator.
			Subtracts the value of an angle (in rad!) from a number.
	*/
	template <typename T>
	BALL_INLINE
	TAngle<T> operator - (const T& val, const TAngle<T>& angle) 
	{
		return TAngle<T>(val - angle.value);
	}

	/**	Input Operator.
			Reads the value (in radians) of an angle from an instream using T::operator >>
	*/
	template <typename T>
	std::istream& operator >> (std::istream& s, TAngle<T>& angle)
	{
		char c;
		s >> c >> angle.value >> c;
		return s;
	}

	/**	Output Operator.
			Writes the value of the angle to an output stream.
			The stream operator <tt>operator <<</tt> has to be defined
			for the template parameter <tt>T</tt>.
	*/
	template <typename T>
	std::ostream& operator << (std::ostream& s, const TAngle<T>& angle)
	{
		s << '(' << angle.value << ')';

		return s;
	}

} // namespace BALL

#endif // BALL_MATHS_ANGLE_H