/usr/include/ace/Timer_Wheel_T.cpp is in libace-dev 6.0.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 | // $Id: Timer_Wheel_T.cpp 89254 2010-02-25 22:10:39Z cleeland $
#ifndef ACE_TIMER_WHEEL_T_CPP
#define ACE_TIMER_WHEEL_T_CPP
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/OS_NS_sys_time.h"
#include "ace/Guard_T.h"
#include "ace/Timer_Wheel_T.h"
#include "ace/Log_Msg.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
// Design/implementation notes for ACE_Timer_Wheel_T.
//
// Each timer queue entry is represented by a ACE_Timer_Node.
// The timing wheel is divided into a number of "spokes"; there are
// spoke_count_ spokes in the wheel. Each timer is hashed into one of the
// spokes. Entries within each spoke are linked in a double-linked list
// in order of increasing expiration. The first ACE_Timer_Node in each
// spoke is a "dummy node" that marks the end of the list of ACE_Timer_Nodes
// in that spoke.
//
// The timer ID for a scheduled timer is formed by its spoke position in
// the wheel, and the number of timers that have been inserted in that spoke
// since the queue was initialized. N bits of the long timer_id are used
// to determine the spoke, and M bits are used as a counter.
// Each time a Node is inserted into a spoke, it's counter
// is incremented. The count is kept in the timer ID field
// of the dummy root Node. In the event of overflow of the counter, the spoke
// must be searched for each new id to make sure it's not already in use. To
// prevent having to do an exhaustive search each time, we keep extra data
// in the dummy root Node.
/**
* Default Constructor that sets defaults for spoke_count_ and resolution_
* and doesn't do any preallocation.
*
* @param upcall_functor A pointer to a functor to use instead of the default
* @param freelist A pointer to a freelist to use instead of the default
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Wheel_T
(FUNCTOR* upcall_functor
, FreeList* freelist
)
: Base (upcall_functor, freelist)
, spokes_(0)
, spoke_count_(0) // calculated in open_i
, spoke_bits_(0)
, res_bits_ (0)
, earliest_spoke_ (0)
, iterator_(0)
, timer_count_(0)
{
ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T");
this->open_i (0,
ACE_DEFAULT_TIMER_WHEEL_SIZE,
ACE_DEFAULT_TIMER_WHEEL_RESOLUTION);
}
/**
* Constructor that sets up the timing wheel and also may preallocate
* some nodes on the free list
*
* @param spoke_count The number of lists in the timer wheel
* @param resolution The time resolution in milliseconds used by the hashing function
* @param prealloc The number of entries to prealloc in the free_list
* @param upcall_functor A pointer to a functor to use instead of the default
* @param freelist A pointer to a freelist to use instead of the default
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Wheel_T
(u_int spoke_count,
u_int resolution,
size_t prealloc,
FUNCTOR* upcall_functor,
FreeList* freelist)
: Base (upcall_functor, freelist)
, spokes_ (0)
, spoke_count_ (0) // calculated in open_i
, spoke_bits_ (0)
, res_bits_ (0)
, earliest_spoke_ (0)
, iterator_ (0)
, timer_count_ (0)
{
ACE_TRACE ("ACE_Timer_Wheel_T::ACE_Timer_Wheel_T");
this->open_i (prealloc, spoke_count, resolution);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::power2bits (int n,
int min_bits,
int max_bits)
{
int max = (1 << max_bits) - 1;
if (n > max)
return max_bits;
// count the bits in n.
int i = 0;
int tmp = n;
do
{
tmp >>= 1;
++i;
}
while (tmp != 0);
if (i <= min_bits)
return min_bits;
// Which is nearest?
int a = (1 << i) - n;
int b = (1 << (i - 1)) - n;
if (b < 0)
b = -b;
if (b < a)
return i - 1;
return i;
}
/**
* Initialize the queue. Uses the established members for all needed
* information.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::open_i
(size_t prealloc, u_int spokes, u_int res)
{
ACE_TRACE ("ACE_Timer_Wheel_T::open_i");
this->gettimeofday (ACE_OS::gettimeofday);
// Rather than waste bits in our timer id, we might as well round up
// the spoke count to the next power of two - 1 . (i.e 1,3,7,15,...127,etc.)
const int MIN_SPOKE_BITS = 3; // Allow between 8 and 4096 spokes
const int MAX_SPOKE_BITS = 12;
const int MAX_RES_BITS = 20; // 20 is plenty, even on 64 bit platforms.
this->spoke_bits_ = power2bits (spokes, MIN_SPOKE_BITS, MAX_SPOKE_BITS);
this->res_bits_ = power2bits (res, 1, MAX_RES_BITS);
this->spoke_count_ = 1 << this->spoke_bits_;
this->free_list_->resize (prealloc + this->spoke_count_);
this->wheel_time_.msec (1 << (this->res_bits_));
ACE_NEW (this->spokes_, ACE_Timer_Node_T<TYPE>* [this->spoke_count_]);
// Create the root nodes. These will be treated specially
for (u_int i = 0; i < this->spoke_count_; ++i)
{
ACE_Timer_Node_T<TYPE>* root = this->alloc_node ();
root->set (0, 0, ACE_Time_Value::zero, ACE_Time_Value::zero, root, root, 0);
this->spokes_[i] = root;
}
ACE_NEW (iterator_, Iterator (*this));
}
/// Destructor just cleans up its memory
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Wheel_T (void)
{
ACE_TRACE ("ACE_Timer_Wheel_T::~ACE_Timer_Wheel_T");
delete iterator_;
for (u_int i = 0; i < this->spoke_count_; ++i)
{
// Free all the nodes starting at the root
ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
for (ACE_Timer_Node_T<TYPE>* n = root->get_next (); n != root;)
{
ACE_Timer_Node_T<TYPE>* next = n->get_next ();
this->upcall_functor ().deletion (*this,
n->get_type (),
n->get_act ());
this->free_node (n);
n = next;
}
delete root;
}
delete[] this->spokes_;
}
/// Searches for a node by timer_id within one spoke.
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::find_spoke_node
(u_int spoke, long timer_id) const
{
ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
for (ACE_Timer_Node_T<TYPE>* n = root->get_next ();
n != root;
n = n->get_next ())
{
if (n->get_timer_id () == timer_id)
return n;
}
return 0;
}
/// Searches all spokes for a node matching the specified timer_id
/// Uses the spoke encoded in the timer_id as a starting place.
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::find_node (long timer_id) const
{
if (timer_id == -1)
return 0;
// Search the spoke where timer_id was originally scheduled
u_int spoke_mask = this->spoke_count_ - 1;
u_int start = timer_id & spoke_mask;
ACE_Timer_Node_T<TYPE>* n = this->find_spoke_node (start, timer_id);
if (n != 0)
return n;
//ACE_ERROR((LM_ERROR, "Node not found in original spoke.\n"));
// Search the rest of the spokes
for (u_int i = 0; i < this->spoke_count_; ++i)
{
if (i != start)
{ // already searched this one
n = this->find_spoke_node (i, timer_id);
if (n != 0)
return n;
}
}
//ACE_ERROR((LM_ERROR, "Node not found.\n"));
return 0;
}
/**
* Check to see if the wheel is empty
*
* @return True if empty
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> bool
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::is_empty (void) const
{
ACE_TRACE ("ACE_Timer_Wheel_T::is_empty");
return timer_count_ == 0;
}
/**
* @return First (earliest) node in the wheel_'s earliest_spoke_ list
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> const ACE_Time_Value &
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::earliest_time (void) const
{
ACE_TRACE ("ACE_Timer_Wheel_T::earliest_time");
ACE_Timer_Node_T<TYPE>* n = this->get_first_i ();
if (n != 0)
return n->get_timer_value ();
return ACE_Time_Value::zero;
}
/// Uses a simple hash to find which spoke to use based on when the
/// timer is due to expire. Hopefully the 64bit int operations avoid
/// any overflow problems.
template <class TYPE, class FUNCTOR, class ACE_LOCK> u_int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_spoke
(const ACE_Time_Value& t) const
{
return static_cast<u_int> ((t.msec () >> this->res_bits_) & (this->spoke_count_ - 1));
}
/// Generates a unique timer_id for the given spoke. It should be pretty
/// fast until the point where the counter overflows. At that time you
/// have to do exhaustive searches within the spoke to ensure that a particular
/// timer id is not already in use. Some optimizations are in place so
/// that this hopefully doesn't have to happen often.
template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::generate_timer_id (u_int spoke)
{
int cnt_bits = sizeof (long) * 8 - this->spoke_bits_;
long max_cnt = ((long)1 << cnt_bits) - 1;
if (spoke == this->spoke_count_)
--max_cnt; // Because -1 is used as a special invalid timer_id.
ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
if (root == root->get_next ())
root->set_act(0);
// We use this field to keep track of the next counter value that
// may be in use. Of course it may have expired, so we just use
// this field so that we know when we don't have to check for duplicates
#if defined (ACE_WIN64)
// The cast below is legit... we know that long is shorter than a
// pointer, but are only using it as a 'long' storage area.
# pragma warning(push)
# pragma warning(disable : 4311)
#endif /* ACE_WIN64 */
long next_cnt = reinterpret_cast<long> (root->get_act ());
#if defined (ACE_WIN64)
# pragma warning(pop)
#endif /* ACE_WIN64 */
// This field is used as a counter instead of a timer_id.
long cnt = root->get_timer_id ();
if (cnt >= max_cnt && root == root->get_next ())
{
// Special case when we overflow on an empty spoke. We can just
// wrap the count around without searching for duplicates. We only
// want to do this when the counter overflows, so that we return
// unique timer_id values as often as possible.
root->set_timer_id (1);
return spoke;
}
else if (cnt >= max_cnt)
{ // overflow
cnt = 0; // try again starting at zero
}
else if (next_cnt == 0 || cnt < next_cnt)
{
root->set_timer_id (cnt + 1);
return (cnt << this->spoke_bits_) | spoke;
}
//ACE_ERROR((LM_ERROR, "Timer id overflow. We have to search now.\n"));
// We've run out of consecutive id numbers so now we have to search
// for a unique id.
// We'll try increasing numbers until we find one that is not in use,
// and we'll record the next highest number so that we can avoid this
// search as often as possible.
for (; cnt < max_cnt - 1; ++cnt)
{
long id = (cnt << this->spoke_bits_) | spoke;
ACE_Timer_Node_T<TYPE>* n = this->find_spoke_node (spoke, id);
if (n == 0)
{
root->set_timer_id (cnt + 1);
// Now we need to find the next highest cnt in use
next_cnt = 0;
for (; n != root; n = n->get_next ())
{
long tmp = n->get_timer_id () >> this->spoke_bits_;
if (tmp > cnt && (tmp < next_cnt || next_cnt == 0))
next_cnt = tmp;
}
#if defined (ACE_WIN64)
// The cast below is legit... we know we're storing a long in
// a pointer, but are only using it as a 'long' storage area.
# pragma warning(push)
# pragma warning(disable : 4312)
#endif /* ACE_WIN64 */
root->set_act (reinterpret_cast<void*> (next_cnt));
#if defined (ACE_WIN64)
# pragma warning(pop)
#endif /* ACE_WIN64 */
return id;
}
}
return -1; // We did our best, but the spoke is full.
}
/**
* Creates a ACE_Timer_Node_T based on the input parameters. Then inserts
* the node into the wheel using reschedule (). Then returns a timer_id.
*
* @param type The data of the timer node
* @param act Asynchronous Completion Token (AKA magic cookie)
* @param future_time The time the timer is scheduled for (absolute time)
* @param interval If not ACE_Time_Value::zero, then this is a periodic
* timer and interval is the time period
*
* @return Unique identifier (can be used to cancel the timer).
* -1 on failure.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::schedule_i (const TYPE& type,
const void* act,
const ACE_Time_Value& future_time,
const ACE_Time_Value& interval)
{
ACE_TRACE ("ACE_Timer_Wheel_T::schedule_i");
ACE_Timer_Node_T<TYPE>* n = this->alloc_node ();
if (n != 0)
{
u_int spoke = calculate_spoke (future_time);
long id = generate_timer_id (spoke);
//ACE_ERROR((LM_ERROR, "Scheduling %x spoke:%d id:%d\n", (long) n, spoke, id));
if (id != -1)
{
n->set (type, act, future_time, interval, 0, 0, id);
this->schedule_i (n, spoke, future_time);
}
return id;
}
// Failure return
errno = ENOMEM;
return -1;
}
/**
* Takes an ACE_Timer_Node and inserts it into the correct position in
* the correct list. Also makes sure to update the earliest time.
*
* @param n The timer node to reschedule
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::reschedule (ACE_Timer_Node_T<TYPE>* n)
{
ACE_TRACE ("ACE_Timer_Wheel_T::reschedule");
const ACE_Time_Value& expire = n->get_timer_value ();
u_int spoke = calculate_spoke (expire);
this->schedule_i (n, spoke, expire);
}
/// The shared scheduling functionality between schedule() and reschedule()
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::schedule_i
(ACE_Timer_Node_T<TYPE>* n,
u_int spoke,
const ACE_Time_Value& expire)
{
// See if we need to update the earliest time
if (this->is_empty() || expire < this->earliest_time ())
this->earliest_spoke_ = spoke;
ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
ACE_Timer_Node_T<TYPE>* last = root->get_prev ();
++timer_count_;
// If the spoke is empty
if (last == root) {
n->set_prev (root);
n->set_next (root);
root->set_prev (n);
root->set_next (n);
return;
}
// We always want to search backwards from the tail of the list, because
// this minimizes the search in the extreme case when lots of timers are
// scheduled for exactly the same time
ACE_Timer_Node_T<TYPE>* p = root->get_prev ();
while (p != root && p->get_timer_value () > expire)
p = p->get_prev ();
// insert after
n->set_prev (p);
n->set_next (p->get_next ());
p->get_next ()->set_prev (n);
p->set_next (n);
}
/**
* Find the timer node by using the id as a pointer. Then use set_interval()
* on the node to update the interval.
*
* @param timer_id The timer identifier
* @param interval The new interval
*
* @return 0 if successful, -1 if no.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::reset_interval (long timer_id,
const ACE_Time_Value &interval
)
{
ACE_TRACE ("ACE_Timer_Wheel_T::reset_interval");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
ACE_Timer_Node_T<TYPE>* n = this->find_node (timer_id);
if (n != 0)
{
// The interval will take effect the next time this node is expired.
n->set_interval (interval);
return 0;
}
return -1;
}
/**
* Goes through every list in the wheel and whenever we find one with the
* correct type value, we remove it and continue. At the end make sure
* we reset the earliest time value in case the earliest timers were
* removed.
*
* @param type The value to search for.
* @param skip_close If this non-zero, the cancellation method of the
* functor will not be called for each cancelled timer.
*
* @return Number of timers cancelled
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (const TYPE& type, int skip_close)
{
ACE_TRACE ("ACE_Timer_Wheel_T::cancel");
int num_canceled = 0; // Note : Technically this can overflow.
int cookie = 0;
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
if (!this->is_empty ())
{
ACE_Timer_Node_T<TYPE>* first = this->get_first ();
ACE_Time_Value last = first->get_timer_value ();
int recalc = 0;
for (u_int i = 0; i < this->spoke_count_; ++i)
{
ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
for (ACE_Timer_Node_T<TYPE>* n = root->get_next (); n != root; )
{
if (n->get_type () == type)
{
++num_canceled;
if (n == first)
recalc = 1;
ACE_Timer_Node_T<TYPE>* tmp = n;
n = n->get_next ();
this->cancel_i (tmp);
}
else
{
n = n->get_next ();
}
}
}
if (recalc)
this->recalc_earliest (last);
}
// Call the close hooks.
// cancel_type() called once per <type>.
this->upcall_functor ().cancel_type (*this,
type,
skip_close,
cookie);
for (int i = 0;
i < num_canceled;
++i)
{
// cancel_timer() called once per <timer>.
this->upcall_functor ().cancel_timer (*this,
type,
skip_close,
cookie);
}
return num_canceled;
}
/**
* Cancels the single timer that is specified by the timer_id. In this
* case the timer_id is actually a pointer to the node, so we cast it
* to the node. This can be dangerous if the timer_id is made up
* (or deleted twice) so we do a little sanity check. Finally we update
* the earliest time in case the earliest timer was removed.
*
* @param timer_id Timer Identifier
* @param act Asychronous Completion Token (AKA magic cookie):
* If this is non-zero, stores the magic cookie of
* the cancelled timer here.
* @param skip_close If this non-zero, the cancellation method of the
* functor will not be called.
*
* @return 1 for sucess and 0 if the timer_id wasn't found (or was
* found to be invalid)
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel (long timer_id,
const void **act,
int skip_close)
{
ACE_TRACE ("ACE_Timer_Wheel_T::cancel");
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
ACE_Timer_Node_T<TYPE>* n = this->find_node (timer_id);
if (n != 0)
{
ACE_Time_Value last = n->get_timer_value ();
int recalc = (this->get_first_i () == n);
// Call the close hooks.
int cookie = 0;
// cancel_type() called once per <type>.
this->upcall_functor ().cancel_type (*this,
n->get_type (),
skip_close,
cookie);
// cancel_timer() called once per <timer>.
this->upcall_functor ().cancel_timer (*this,
n->get_type (),
skip_close,
cookie);
if (act != 0)
*act = n->get_act ();
this->cancel_i (n);
if (recalc)
this->recalc_earliest (last);
return 1;
}
return 0;
}
/// Shared subset of the two cancel() methods.
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::cancel_i (ACE_Timer_Node_T<TYPE>* n)
{
this->unlink (n);
this->free_node (n);
}
/// There are a few places where we have to figure out which timer
/// will expire next. This method makes the assumption that spokes
/// are always sorted, and that timers are always in the correct spoke
/// determined from their expiration time.
/// The last time is always passed in, even though you can often calculate
/// it as get_first()->get_timer_value().
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::recalc_earliest
(const ACE_Time_Value& last)
{
// This is possible because we use a count for is_empty()
if (this->is_empty ())
return;
ACE_Time_Value et = ACE_Time_Value::zero;
u_int es = 0;
u_int spoke = this->earliest_spoke_;
// We will have to go around the wheel at most one time.
for (u_int i = 0; i < this->spoke_count_; ++i)
{
ACE_Timer_Node_T<TYPE>* root = this->spokes_[spoke];
ACE_Timer_Node_T<TYPE>* n = root->get_next ();
if (n != root)
{
ACE_Time_Value t = n->get_timer_value ();
if (t < last + this->wheel_time_)
{
this->earliest_spoke_ = spoke;
return;
}
else if (et == ACE_Time_Value::zero || t < et)
{
et = t;
es = spoke;
}
}
if (++spoke >= this->spoke_count_)
spoke = 0;
}
this->earliest_spoke_ = es;
//ACE_ERROR((LM_ERROR, "We had to search the whole wheel.\n"));
}
/**
* Dumps out the size of the wheel, the resolution, and the contents
* of the wheel.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Timer_Wheel_T::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("\nspoke_count_ = %d"), this->spoke_count_));
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("\nresolution_ = %d"), 1 << this->res_bits_));
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("\nwheel_ =\n")));
for (u_int i = 0; i < this->spoke_count_; ++i)
{
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%d\n"), i));
ACE_Timer_Node_T<TYPE>* root = this->spokes_[i];
for (ACE_Timer_Node_T<TYPE>* n = root->get_next ();
n != root;
n = n->get_next ())
{
n->dump ();
}
}
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
/**
* Removes the earliest node and then find the new <earliest_spoke_>
*
* @return The earliest timer node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::remove_first (void)
{
ACE_TRACE ("ACE_Timer_Wheel_T::remove_first");
return remove_first_expired (ACE_Time_Value::max_time);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::unlink (ACE_Timer_Node_T<TYPE>* n)
{
ACE_TRACE ("ACE_Timer_Wheel_T::unlink");
--timer_count_;
n->get_prev ()->set_next (n->get_next ());
n->get_next ()->set_prev (n->get_prev ());
n->set_prev (0);
n->set_next (0);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::remove_first_expired (const ACE_Time_Value& now)
{
ACE_Timer_Node_T<TYPE>* n = this->get_first ();
if (n != 0 && n->get_timer_value() <= now)
{
this->unlink (n);
this->recalc_earliest (n->get_timer_value ());
return n;
}
return 0;
}
/**
* Returns the earliest node without removing it
*
* @return The earliest timer node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::get_first (void)
{
ACE_TRACE ("ACE_Timer_Wheel_T::get_first");
return this->get_first_i ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Node_T<TYPE>*
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::get_first_i (void) const
{
ACE_Timer_Node_T<TYPE>* root = this->spokes_[this->earliest_spoke_];
ACE_Timer_Node_T<TYPE>* first = root->get_next ();
if (first != root)
return first;
return 0;
}
/**
* @return The iterator
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>&
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::iter (void)
{
this->iterator_->first ();
return *this->iterator_;
}
/**
* Dummy version of expire to get rid of warnings in Sun CC 4.2
* Just call the expire of the base class.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::expire ()
{
return ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::expire ();
}
/**
* This is a specialized version of expire that is more suited for the
* internal data representation.
*
* @param cur_time The time to expire timers up to.
*
* @return Number of timers expired
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Wheel_T<TYPE, FUNCTOR, ACE_LOCK>::expire (const ACE_Time_Value& cur_time)
{
ACE_TRACE ("ACE_Timer_Wheel_T::expire");
int expcount = 0;
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
ACE_Timer_Node_T<TYPE>* n = this->remove_first_expired (cur_time);
while (n != 0)
{
++expcount;
//ACE_ERROR((LM_ERROR, "Expiring %x\n", (long) n));
ACE_Timer_Node_Dispatch_Info_T<TYPE> info;
// Get the dispatch info
n->get_dispatch_info (info);
if (n->get_interval () > ACE_Time_Value::zero)
{
// Make sure that we skip past values that have already
// "expired".
this->recompute_next_abs_interval_time (n, cur_time);
this->reschedule (n);
}
else
{
this->free_node (n);
}
const void *upcall_act = 0;
this->preinvoke (info, cur_time, upcall_act);
this->upcall (info, cur_time);
this->postinvoke (info, cur_time, upcall_act);
n = this->remove_first_expired (cur_time);
}
return expcount;
}
///////////////////////////////////////////////////////////////////////////
// ACE_Timer_Wheel_Iterator_T
/**
* Just initializes the iterator with a ACE_Timer_Wheel_T and then calls
* first() to initialize the rest of itself.
*
* @param wheel A reference for a timer queue to iterate over
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_Iterator_T<TYPE,FUNCTOR,ACE_LOCK>::ACE_Timer_Wheel_Iterator_T
(Wheel& wheel)
: timer_wheel_ (wheel)
{
this->first();
}
/**
* Destructor, at this level does nothing.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Wheel_Iterator_T<TYPE,
FUNCTOR,
ACE_LOCK>::~ACE_Timer_Wheel_Iterator_T (void)
{
}
/**
* Positions the iterator at the first position in the timing wheel
* that contains something. spoke_ will be set to the spoke position of
* this entry and current_node_ will point to the first entry in that spoke.
*
* If the wheel is empty, spoke_ will be equal timer_wheel_.spoke_count_ and
* current_node_ would be 0.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::first (void)
{
this->goto_next(0);
}
/**
* Positions the iterator at the next node.
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::next (void)
{
if (this->isdone())
return;
ACE_Timer_Node_T<TYPE>* n = this->current_node_->get_next ();
ACE_Timer_Node_T<TYPE>* root = this->timer_wheel_.spokes_[this->spoke_];
if (n == root)
this->goto_next (this->spoke_ + 1);
else
this->current_node_ = n;
}
/// Helper class for common functionality of next() and first()
template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::goto_next (u_int start_spoke)
{
// Find the first non-empty entry.
u_int sc = this->timer_wheel_.spoke_count_;
for (u_int i = start_spoke; i < sc; ++i)
{
ACE_Timer_Node_T<TYPE>* root = this->timer_wheel_.spokes_[i];
ACE_Timer_Node_T<TYPE>* n = root->get_next ();
if (n != root)
{
this->spoke_ = i;
this->current_node_ = n;
return;
}
}
// empty
this->spoke_ = sc;
this->current_node_ = 0;
}
/**
* @return True when we there aren't any more items (when current_node_ == 0)
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> bool
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::isdone (void) const
{
return this->current_node_ == 0;
}
/**
* @return The node at the current spokeition in the sequence or 0 if the wheel
* is empty
*/
template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Wheel_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::item (void)
{
return this->current_node_;
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_TIMER_WHEEL_T_CPP */
|