/usr/include/ace/Timer_Hash_T.cpp is in libace-dev 6.0.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 | // $Id: Timer_Hash_T.cpp 92069 2010-09-28 11:38:59Z johnnyw $
#ifndef ACE_TIMER_HASH_T_CPP
#define ACE_TIMER_HASH_T_CPP
#include "ace/Timer_Hash_T.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/OS_NS_sys_time.h"
#include "ace/Guard_T.h"
#include "ace/Log_Msg.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
template <class TYPE>
class Hash_Token
{
public:
// This constructor is required by ACE_Locked_Free_List::alloc.
Hash_Token (void)
{}
Hash_Token<TYPE> *get_next (void)
{
return this->next_;
}
void set_next (Hash_Token<TYPE> *next)
{
this->next_ = next;
}
void set (const void *act,
size_t pos,
long orig_id,
const TYPE &type)
{
this->act_ = act;
this->pos_ = pos;
this->orig_id_ = orig_id;
this->type_ = type;
this->next_ = 0;
}
const void *act_;
size_t pos_;
long orig_id_;
TYPE type_;
/// Pointer to next token.
Hash_Token<TYPE> *next_;
};
// Default constructor
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Hash_Upcall (void)
: timer_hash_ (0)
{
// Nothing
}
// Constructor that specifies a Timer_Hash to call up to
template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Hash_Upcall (
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK> *timer_hash)
: timer_hash_ (timer_hash)
{
// Nothing
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::registration (
TIMER_QUEUE &,
ACE_Event_Handler *,
const void *)
{
// Registration will be handled by the upcall functor of the timer
// hash.
return 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::preinvoke (TIMER_QUEUE &,
ACE_Event_Handler *,
const void *,
int,
const ACE_Time_Value &,
const void *&)
{
// This method should never be invoked since we don't invoke
// expire() on the buckets.
ACE_ASSERT (0);
return 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::postinvoke (
TIMER_QUEUE &,
ACE_Event_Handler *,
const void *,
int,
const ACE_Time_Value &,
const void *)
{
// This method should never be invoked since we don't invoke
// expire() on the buckets.
ACE_ASSERT (0);
return 0;
}
// Calls up to timer_hash's upcall functor
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::timeout (
TIMER_QUEUE &,
ACE_Event_Handler *,
const void *,
int,
const ACE_Time_Value &)
{
// This method should never be invoked since we don't invoke
// expire() on the buckets.
ACE_ASSERT (0);
return 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::cancel_type (
TIMER_QUEUE &,
ACE_Event_Handler *,
int,
int &)
{
// Cancellation will be handled by the upcall functor of the timer
// hash.
return 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::cancel_timer (
TIMER_QUEUE &,
ACE_Event_Handler *,
int,
int)
{
// Cancellation will be handled by the upcall functor of the timer
// hash.
return 0;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>::deletion (
TIMER_QUEUE &,
ACE_Event_Handler *event_handler,
const void *arg)
{
// Call up to the upcall functor of the timer hash since the timer
// hash does not invoke deletion() on its upcall functor directly.
Hash_Token<TYPE> *h =
reinterpret_cast<Hash_Token<TYPE> *> (const_cast<void *> (arg));
int result =
this->timer_hash_->upcall_functor ().
deletion (*this->timer_hash_,
event_handler,
h->act_);
return result;
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Hash_Iterator_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::ACE_Timer_Hash_Iterator_T (ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET> &hash)
: timer_hash_ (hash)
{
this->first ();
// Nothing
}
// Positions the iterator at the first node in the timing hash table
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> void
ACE_Timer_Hash_Iterator_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::first (void)
{
for (this->position_ = 0;
this->position_ < this->timer_hash_.table_size_;
++this->position_)
{
// Check for an empty entry
if (!this->timer_hash_.table_[this->position_]->is_empty ())
{
this->iter_ = &this->timer_hash_.table_[this->position_]->iter ();
this->iter_->first ();
return;
}
}
// Didn't find any
this->iter_ = 0;
}
// Positions the iterator at the next node in the bucket or goes to the next
// bucket
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> void
ACE_Timer_Hash_Iterator_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::next (void)
{
if (this->isdone ())
return;
// If there is no more in the current bucket, go to the next
if (this->iter_->isdone ())
{
for (++this->position_;
this->position_ < this->timer_hash_.table_size_;
++this->position_)
{
// Check for an empty entry
if (!this->timer_hash_.table_[this->position_]->is_empty ())
{
this->iter_ = &this->timer_hash_.table_[this->position_]->iter ();
this->iter_->first ();
return;
}
}
// Didn't find any.
this->iter_ = 0;
}
else
this->iter_->next ();
}
// Returns true when we are at the end (when bucket_item_ == 0)
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> bool
ACE_Timer_Hash_Iterator_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::isdone (void) const
{
return this->iter_ == 0;
}
// Returns the node at the current position in the sequence
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Node_T<TYPE> *
ACE_Timer_Hash_Iterator_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::item (void)
{
if (this->isdone ())
return 0;
return this->iter_->item ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK> &
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::iter (void)
{
this->iterator_->first ();
return *this->iterator_;
}
// Create an empty queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::ACE_Timer_Hash_T (
size_t table_size,
FUNCTOR *upcall_functor,
ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
: ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK> (upcall_functor, freelist),
size_ (0),
table_size_ (table_size),
table_functor_ (this),
earliest_position_ (0)
#if defined (ACE_WIN64)
, pointer_base_ (0)
#endif /* ACE_WIN64 */
, token_list_ ()
{
ACE_TRACE ("ACE_Timer_Hash_T::ACE_Timer_Hash_T");
ACE_NEW (table_,
BUCKET *[table_size]);
this->gettimeofday (ACE_OS::gettimeofday);
for (size_t i = 0;
i < table_size;
++i)
{
ACE_NEW (this->table_[i],
BUCKET (&this->table_functor_,
this->free_list_));
this->table_[i]->gettimeofday (ACE_OS::gettimeofday);
}
ACE_NEW (iterator_,
HASH_ITERATOR (*this));
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::ACE_Timer_Hash_T (
FUNCTOR *upcall_functor,
ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
: ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK> (upcall_functor, freelist),
size_ (0),
table_size_ (ACE_DEFAULT_TIMER_HASH_TABLE_SIZE),
table_functor_ (this),
earliest_position_ (0)
#if defined (ACE_WIN64)
, pointer_base_ (0)
#endif /* ACE_WIN64 */
, token_list_ ()
{
ACE_TRACE ("ACE_Timer_Hash_T::ACE_Timer_Hash_T");
ACE_NEW (table_,
BUCKET *[ACE_DEFAULT_TIMER_HASH_TABLE_SIZE]);
this->gettimeofday (ACE_OS::gettimeofday);
for (size_t i = 0;
i < this->table_size_;
++i)
{
ACE_NEW (this->table_[i],
BUCKET (&this->table_functor_,
this->free_list_));
this->table_[i]->gettimeofday (ACE_OS::gettimeofday);
}
ACE_NEW (iterator_,
HASH_ITERATOR (*this));
}
// Remove all remaining items in the Queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::~ACE_Timer_Hash_T (void)
{
ACE_TRACE ("ACE_Timer_Hash_T::~ACE_Timer_Hash_T");
ACE_MT (ACE_GUARD (ACE_LOCK, ace_mon, this->mutex_));
delete iterator_;
for (size_t i = 0;
i < this->table_size_;
++i)
delete this->table_[i];
delete [] this->table_;
}
// Checks if queue is empty.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> bool
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::is_empty (void) const
{
ACE_TRACE ("ACE_Timer_Hash_T::is_empty");
return this->table_[this->earliest_position_]->is_empty ();
}
// Returns earliest time in a non-empty bucket
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
const ACE_Time_Value &
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::earliest_time (void) const
{
ACE_TRACE ("ACE_Timer_Hash_T::earliest_time");
return this->table_[this->earliest_position_]->earliest_time ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> void
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Timer_Hash_T::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\ntable_size_ = %d"), this->table_size_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nearliest_position_ = %d"), this->earliest_position_));
for (size_t i = 0; i < this->table_size_; ++i)
if (!this->table_[i]->is_empty ())
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nBucket %d contains nodes"), i));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
// Reschedule a periodic timer. This function must be called with the
// mutex lock held.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
void
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::reschedule (
ACE_Timer_Node_T<TYPE> *expired)
{
ACE_TRACE ("ACE_Timer_Hash_T::reschedule");
Hash_Token<TYPE> *h =
reinterpret_cast<Hash_Token<TYPE> *> (
const_cast<void *> (expired->get_act ()));
// Don't use ACE_Utils::truncate_cast<> here. A straight
// static_cast<> will provide more unique results when the number
// of seconds is greater than std::numeric_limits<size_t>::max().
size_t const secs_hash_input =
static_cast<size_t> (expired->get_timer_value ().sec ());
h->pos_ = secs_hash_input % this->table_size_;
h->orig_id_ =
this->table_[h->pos_]->schedule (expired->get_type (),
h,
expired->get_timer_value (),
expired->get_interval ());
ACE_ASSERT (h->orig_id_ != -1);
// Since schedule() above will allocate a new node
// then here schedule <expired> for deletion. Don't call
// this->free_node() because that will invalidate <h>
// and that's what user have as timer_id.
ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::free_node (expired);
if (this->table_[this->earliest_position_]->is_empty ()
|| this->table_[h->pos_]->earliest_time ()
< this->table_[this->earliest_position_]->earliest_time ())
this->earliest_position_ = h->pos_;
}
// Insert a new handler that expires at time future_time; if interval
// is > 0, the handler will be reinvoked periodically.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
long
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::schedule_i (
const TYPE &type,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval)
{
ACE_TRACE ("ACE_Timer_Hash_T::schedule_i");
// Don't use ACE_Utils::truncate_cast<> here. A straight
// static_cast<> will provide more unique results when the number
// of seconds is greater than std::numeric_limits<size_t>::max().
size_t const secs_hash_input = static_cast<size_t> (future_time.sec ());
size_t const position = secs_hash_input % this->table_size_;
// Don't create Hash_Token directly. Instead we get one from Free_List
// and then set it properly.
Hash_Token<TYPE> *h = this->token_list_.remove ();
h->set (act, position, 0, type);
h->orig_id_ =
this->table_[position]->schedule (type,
h,
future_time,
interval);
ACE_ASSERT (h->orig_id_ != -1);
if (this->table_[this->earliest_position_]->is_empty ()
|| this->table_[position]->earliest_time ()
< this->table_[this->earliest_position_]->earliest_time ())
this->earliest_position_ = position;
++this->size_;
#if defined (ACE_WIN64)
// This is a Win64 hack, necessary because of the original (bad) decision
// to use a pointer as the timer ID. This class doesn't follow the usual
// timer expiration rules (see comments in header file) and is probably
// not used much. The dynamic allocation of Hash_Tokens without
// recording them anywhere is a large problem for Win64 since the
// size of a pointer is 64 bits, but a long is 32. Since this class
// is not much used, I'm hacking this, at least for now. If it becomes
// an issue, I'll look at it again then.
intptr_t hi = reinterpret_cast<intptr_t> (h);
if (this->pointer_base_ == 0)
this->pointer_base_ = hi & 0xffffffff00000000;
return static_cast<long> (hi & 0xffffffff);
#else
return reinterpret_cast<long> (h);
#endif
}
// Locate and update the inteval on the timer_id
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::reset_interval (
long timer_id,
const ACE_Time_Value & interval)
{
ACE_TRACE ("ACE_Timer_Hash_T::reset_interval");
// Make sure we are getting a valid <timer_id>, not an error
// returned by <schedule>.
if (timer_id == -1)
return -1;
#if defined (ACE_WIN64)
unsigned long const timer_offset =
static_cast<unsigned long> (timer_id);
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
Hash_Token<TYPE> * const h =
reinterpret_cast<Hash_Token<TYPE> *> (this->pointer_base_ + timer_offset);
#else
Hash_Token<TYPE> * const h =
reinterpret_cast<Hash_Token<TYPE> *> (timer_id);
// Grab the lock before accessing the table. We don't need to do so
// before this point since no members are accessed until now.
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
#endif /* ACE_WIN64 */
return this->table_[h->pos_]->reset_interval (h->orig_id_,
interval);
}
// Locate and remove the single <ACE_Event_Handler> with a value of
// @a timer_id from the correct table timer queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::cancel (long timer_id,
const void **act,
int dont_call)
{
ACE_TRACE ("ACE_Timer_Hash_T::cancel");
// Make sure we are getting a valid <timer_id>, not an error
// returned by <schedule>.
if (timer_id == -1)
return 0;
#if defined (ACE_WIN64)
unsigned long const timer_offset =
static_cast<unsigned long> (timer_id);
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
Hash_Token<TYPE> * const h =
reinterpret_cast<Hash_Token<TYPE> *> (this->pointer_base_ + timer_offset);
#else
Hash_Token<TYPE> * const h =
reinterpret_cast<Hash_Token<TYPE> *> (timer_id);
// Grab the lock before accessing the table. We don't need to do so
// before this point since no members are accessed until now.
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
#endif /* ACE_WIN64 */
int const result = this->table_[h->pos_]->cancel (h->orig_id_,
0,
dont_call);
if (result == 1)
{
// Call the close hooks.
int cookie = 0;
// cancel_type() called once per <type>.
this->upcall_functor ().cancel_type (*this,
h->type_,
dont_call,
cookie);
// cancel_timer() called once per <timer>.
this->upcall_functor ().cancel_timer (*this,
h->type_,
dont_call,
cookie);
if (h->pos_ == this->earliest_position_)
this->find_new_earliest ();
if (act != 0)
*act = h->act_;
// We could destruct Hash_Token explicitly but we better
// schedule it for destruction. In this case next
// token_list_.remove () will use it.
this->token_list_.add (h);
--this->size_;
}
return result;
}
// Locate and remove all values of <type> from the timer queue.
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET>
int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::cancel (const TYPE &type,
int dont_call)
{
ACE_TRACE ("ACE_Timer_Hash_T::cancel");
size_t i; // loop variable.
Hash_Token<TYPE> **timer_ids = 0;
size_t pos = 0;
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
ACE_NEW_RETURN (timer_ids,
Hash_Token<TYPE> *[this->size_],
-1);
for (i = 0;
i < this->table_size_;
++i)
{
ACE_Timer_Queue_Iterator_T<TYPE,
ACE_Timer_Hash_Upcall<TYPE, FUNCTOR, ACE_LOCK>,
ACE_Null_Mutex> &iter =
this->table_[i]->iter ();
for (iter.first ();
!iter.isdone ();
iter.next ())
if (iter.item ()->get_type () == type)
timer_ids[pos++] =
reinterpret_cast<Hash_Token<TYPE> *> (
const_cast<void *> (iter.item ()->get_act ()));
}
if (pos > this->size_)
return -1;
for (i = 0; i < pos; ++i)
{
int const result =
this->table_[timer_ids[i]->pos_]->cancel (timer_ids[i]->orig_id_,
0,
dont_call);
ACE_ASSERT (result == 1);
ACE_UNUSED_ARG (result);
// We could destruct Hash_Token explicitly but we better
// schedule it for destruction.
this->token_list_.add (timer_ids[i]);
--this->size_;
}
delete [] timer_ids;
this->find_new_earliest ();
// Call the close hooks.
int cookie = 0;
// cancel_type() called once per <type>.
this->upcall_functor ().cancel_type (*this,
type,
dont_call,
cookie);
for (i = 0;
i < pos;
++i)
{
// cancel_timer() called once per <timer>.
this->upcall_functor ().cancel_timer (*this,
type,
dont_call,
cookie);
}
return static_cast<int> (pos);
}
// Removes the earliest node and finds the new earliest position
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::remove_first (void)
{
if (this->is_empty ())
return 0;
ACE_Timer_Node_T<TYPE> *temp =
this->table_[this->earliest_position_]->remove_first ();
this->find_new_earliest ();
--this->size_;
return temp;
}
// Finds a new earliest position
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> void
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::find_new_earliest (void)
{
for (size_t i = 0; i < this->table_size_; ++i)
if (!this->table_[i]->is_empty ())
if (this->table_[this->earliest_position_]->is_empty ()
|| this->earliest_time () == ACE_Time_Value::zero
|| this->table_[i]->earliest_time () <= this->earliest_time ())
this->earliest_position_ = i;
}
// Returns the earliest node without removing it
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::get_first (void)
{
ACE_TRACE ("ACE_Timer_Hash_T::get_first");
if (this->is_empty ())
return 0;
return this->table_[this->earliest_position_]->get_first ();
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> void
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::free_node (ACE_Timer_Node_T<TYPE> *node)
{
ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::free_node (node);
Hash_Token<TYPE> *h =
reinterpret_cast<Hash_Token<TYPE> *> (const_cast<void *> (node->get_act ()));
this->token_list_.add (h);
}
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::dispatch_info_i (const ACE_Time_Value &cur_time,
ACE_Timer_Node_Dispatch_Info_T<TYPE> &info)
{
int const result =
ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::dispatch_info_i (cur_time,
info);
if (result == 1)
{
Hash_Token<TYPE> *h =
reinterpret_cast<Hash_Token<TYPE> *> (const_cast<void *> (info.act_));
info.act_ = h->act_;
}
return result;
}
// Dummy version of expire to get rid of warnings in Sun CC 4.2
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::expire ()
{
return ACE_Timer_Queue_T<TYPE,FUNCTOR,ACE_LOCK>::expire();
}
// Specialized expire for Timer Hash
template <class TYPE, class FUNCTOR, class ACE_LOCK, class BUCKET> int
ACE_Timer_Hash_T<TYPE, FUNCTOR, ACE_LOCK, BUCKET>::expire (const ACE_Time_Value &cur_time)
{
ACE_TRACE ("ACE_Timer_Hash_T::expire");
int number_of_timers_expired = 0;
ACE_Timer_Node_T<TYPE> *expired = 0;
ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));
// Go through the table and expire anything that can be expired
for (size_t i = 0;
i < this->table_size_;
++i)
{
while (!this->table_[i]->is_empty ()
&& this->table_[i]->earliest_time () <= cur_time)
{
expired = this->table_[i]->remove_first ();
const void *act = expired->get_act ();
bool reclaim = true;
Hash_Token<TYPE> *h =
reinterpret_cast<Hash_Token<TYPE> *> (const_cast<void *> (act));
ACE_ASSERT (h->pos_ == i);
// Check if this is an interval timer.
if (expired->get_interval () > ACE_Time_Value::zero)
{
// Make sure that we skip past values that have already
// "expired".
this->recompute_next_abs_interval_time (expired, cur_time);
// Since this is an interval timer, we need to
// reschedule it.
this->reschedule (expired);
reclaim = false;
}
else
{
this->free_node (expired);
}
ACE_Timer_Node_Dispatch_Info_T<TYPE> info;
// Get the dispatch info
expired->get_dispatch_info (info);
info.act_ = h->act_;
const void *upcall_act = 0;
this->preinvoke (info, cur_time, upcall_act);
this->upcall (info, cur_time);
this->postinvoke (info, cur_time, upcall_act);
if (reclaim)
{
--this->size_;
}
++number_of_timers_expired;
}
}
if (number_of_timers_expired > 0)
this->find_new_earliest ();
return number_of_timers_expired;
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_TIMER_HASH_T_CPP */
|