This file is indexed.

/usr/include/gmsh/GFace.h is in gmsh 2.5.1~beta2~svn10284~dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.

#ifndef _GFACE_H_
#define _GFACE_H_

#include <list>
#include <string>
#include <vector>
#include <map>
#include "GEntity.h"
#include "GPoint.h"
#include "GEdgeLoop.h"
#include "SPoint2.h"
#include "SVector3.h"
#include "Pair.h"

class MElement;
class MTriangle;
class MQuadrangle;
class MPolygon;
class ExtrudeParams;
class GFaceCompound;

struct mean_plane
{
  double plan[3][3];
  double a, b, c, d;
  double x, y, z;
};

struct surface_params
{
  double radius, radius2, height, cx, cy, cz;
};

class GRegion;

// A model face.
class GFace : public GEntity
{
 protected:
  // edge loops might replace what follows (list of all the edges of
  // the face + directions)
  std::list<GEdge *> l_edges;
  std::list<int> l_dirs;
  GRegion *r1, *r2;
  mean_plane meanPlane;
  std::list<GEdge *> embedded_edges;
  std::list<GVertex *> embedded_vertices;
  GFaceCompound *compound; // this model ede belongs to a compound 

  // replace edges (gor gluing) for specific modelers, we have to
  // re-create internal data
  virtual void replaceEdgesInternal(std::list<GEdge*> &){}

 public: // this will become protected or private
  std::list<GEdgeLoop> edgeLoops;

  // periodic counterparts of edges
  std::map<int,int> edgeCounterparts;

  // an array with additional vertices that are supposed to exist in
  // the final mesh of the model face. This can be used for boundary
  // layer meshes or when using Lloyd-like smoothing algorithms those
  // vertices are classifed on this GFace, their type is MFaceVertex.
  // After mesh generation, those are moved to the mesh_vertices array

 public:
  GFace(GModel *model, int tag);
  virtual ~GFace();

  std::vector<MVertex*> additionalVertices;	
	
  // delete mesh data
  virtual void deleteMesh();

  // add/delete regions that are bounded by the face
  void addRegion(GRegion *r){ r1 ? r2 = r : r1 = r; }
  void delRegion(GRegion *r){ if(r1 == r) r1 = r2; r2 = 0; }
  GRegion* getRegion(int num) const{ if (num==0) return r1; else return r2;  };

  // get number of regions
  int numRegions() const { int num=0; if(r1) num++; if(r2) num++; return num; }

  // add embedded vertices/edges
  void addEmbeddedVertex(GVertex *v){ embedded_vertices.push_back(v); }
  void addEmbeddedEdge(GEdge *e){ embedded_edges.push_back(e); }
  
  // delete the edge from the face (the edge is supposed to be a free
  // edge in the face, not part of any edge loops--use with caution!)
  void delFreeEdge(GEdge *e);

  // edge orientations
  virtual std::list<int> orientations() const { return l_dirs; }

  // edges that bound the face
  virtual std::list<GEdge*> edges() const { return l_edges; }
  virtual std::list<int> edgeOrientations() const { return l_dirs; }

  // edges that are embedded in the face
  virtual std::list<GEdge*> embeddedEdges() const { return embedded_edges; }

  // edges that are embedded in the face
  virtual std::list<GVertex*> embeddedVertices() const { return embedded_vertices; }

  // vertices that bound the face
  virtual std::list<GVertex*> vertices() const;

  // dimension of the face (2)
  virtual int dim() const { return 2; }

  // set visibility flag
  virtual void setVisibility(char val, bool recursive=false);

  // compute the parameters UV from a point XYZ
  void XYZtoUV(double X, double Y, double Z, double &U, double &V,
               double relax, bool onSurface=true) const;

  // get the bounding box
  virtual SBoundingBox3d bounds() const;

  // get the oriented bounding box
  virtual SOrientedBoundingBox getOBB();
  
  // retrieve surface params
  virtual surface_params getSurfaceParams() const;

  // compute the genus G of the surface
  // we have the poincare constant CHI = #V-#E+#F
  // where #V #E and #F are the number of vertices, edges
  // and faces of the surface
  // Then, CHI = 2 G + 2 - B
  // where B is the number of boundaries (edge loops) of the
  // surface. This topological constant can be computed using both the
  // geometry and the mesh. Both approaches should give the same result ;-)
  // by default, genus is ZERO
  int poincareMesh();
  int genusMesh() { return (poincareMesh() + edgeLoops.size() - 2) / 2; }
  virtual int genusGeom();
  virtual bool checkTopology() const { return true; }

  // return the point on the face corresponding to the given parameter
  virtual GPoint point(double par1, double par2) const = 0;
  virtual GPoint point(const SPoint2 &pt) const { return point(pt.x(), pt.y()); }

  // compute, in parametric space, the interpolation from pt1 to pt2
  // along a geodesic of the surface
  virtual SPoint2 geodesic(const SPoint2 &pt1, const SPoint2 &pt2, double t);

  // compute the length of a geodesic between two points in parametric
  // space
  virtual double length(const SPoint2 &pt1, const SPoint2 &pt2, int n=4);

  // if the mapping is a conforming mapping, i.e. a mapping that
  // conserves angles, this function returns the eigenvalue of the
  // metric at a given point this is a special feature for
  // stereographic mappings of the sphere that is used in 2D mesh
  // generation !
  virtual double getMetricEigenvalue(const SPoint2 &);
  
  // eigen values are absolute values and sorted from min to max of absolute values
  // eigen vectors are the COLUMNS of eigVec
  virtual void getMetricEigenVectors(const SPoint2 &param, 
                                     double eigVal[2], double eigVec[4]) const;

  // return the parmater location on the face given a point in space
  // that is on the face
  virtual SPoint2 parFromPoint(const SPoint3 &, bool onSurface=true) const;

  // true if the parameter value is interior to the face
  virtual bool containsParam(const SPoint2 &pt) const;

  // return the point on the face closest to the given point
  virtual GPoint closestPoint(const SPoint3 & queryPoint, 
                              const double initialGuess[2]) const;

  // return the normal to the face at the given parameter location
  virtual SVector3 normal(const SPoint2 &param) const;

  // return the first derivate of the face at the parameter location
  virtual Pair<SVector3, SVector3> firstDer(const SPoint2 &param) const = 0;

  // compute the second derivates of the face at the parameter location
  // the derivates have to be allocated before calling this function
  virtual void secondDer(const SPoint2 &param, 
                         SVector3 *dudu, SVector3 *dvdv, SVector3 *dudv) const = 0;

  // return the curvature computed as the divergence of the normal
  inline double curvature(const SPoint2 &param) const { return curvatureMax(param); }
  virtual double curvatureDiv(const SPoint2 &param) const;

  // return the maximum curvature at a point
  virtual double curvatureMax(const SPoint2 &param) const;

  // compute the min and max curvatures and the corresponding directions
  // return the max curvature
  // outputs have to be allocated before calling this function
  virtual double curvatures(const SPoint2 &param, SVector3 *dirMax, SVector3 *dirMin,
                            double *curvMax, double *curvMin) const;

  // return a type-specific additional information string
  virtual std::string getAdditionalInfoString();

  // export in GEO format
  virtual void writeGEO(FILE *fp);

  // fill the crude representation cross
  virtual bool buildRepresentationCross(bool force=false);

  // build an STL triangulation (or do nothing if it already exists,
  // unless force=true)
  virtual bool buildSTLTriangulation(bool force=false);

  // fill the vertex array using an STL triangulation
  bool fillVertexArray(bool force=false);

  // recompute the mean plane of the surface from a list of points
  void computeMeanPlane(const std::vector<MVertex*> &points);
  void computeMeanPlane(const std::vector<SPoint3> &points);

  // recompute the mean plane of the surface from its bounding vertices
  void computeMeanPlane();

  // get the mean plane info
  void getMeanPlaneData(double VX[3], double VY[3],
                        double &x, double &y, double &z) const;
  void getMeanPlaneData(double plan[3][3]) const;

  // number of types of elements
  int getNumElementTypes() const { return 3; }

  // get total/by-type number of elements in the mesh
  unsigned int getNumMeshElements();
  unsigned int getNumMeshParentElements();
  void getNumMeshElements(unsigned *const c) const;

  // get the start of the array of a type of element
  MElement *const *getStartElementType(int type) const;

  // get the element at the given index
  MElement *getMeshElement(unsigned int index);

  // reset the mesh attributes to default values
  virtual void resetMeshAttributes();

  // for periodic faces, move parameters into the range chosen
  // for that face
  void moveToValidRange(SPoint2 &pt) const;

  // compound
  void setCompound(GFaceCompound *gfc) { compound = gfc; }
  GFaceCompound *getCompound() const { return compound; }

  // add points (and optionalluy normals) in vectors so that two
  // points are at most maxDist apart
  bool fillPointCloud(double maxDist, std::vector<SPoint3> *points,
                      std::vector<SVector3> *normals=0);

  // apply Lloyd's algorithm to the mesh
  void lloyd (int nIter, int infNorm = 0); 

  // replace edges (gor gluing)
  void replaceEdges(std::list<GEdge*> &);
  
  // tells if it's a sphere, and if it is, returns parameters
  virtual bool isSphere (double &radius, SPoint3 &center) const {return false;}

  // add layers of quads
  void addLayersOfQuads (int nLayers, GVertex *start, double hmin, double factor);
  
  struct {
    // do we recombine the triangles of the mesh?
    int recombine;
    // what is the treshold angle for recombination
    double recombineAngle;
    // is this surface meshed using a transfinite interpolation
    char Method;
    // corners of the transfinite interpolation
    std::vector<GVertex*> corners;
    // all diagonals of the triangulation are left (-1), right (1) or
    // alternated (0)
    int transfiniteArrangement;
    // do we smooth (transfinite) mesh? (<0 to use default smoothing)
    int transfiniteSmoothing;
    // the extrusion parameters (if any)
    ExtrudeParams *extrude;
    // edge loops
  } meshAttributes ;

  typedef enum {PENDING, DONE, FAILED} meshGenerationStatus;
  struct {
    mutable meshGenerationStatus status;
    double worst_element_shape, best_element_shape, average_element_shape;
    double smallest_edge_length, longest_edge_length, efficiency_index;
    int nbEdge, nbTriangle;
    int nbGoodQuality, nbGoodLength;
  } meshStatistics;

  // a crude graphical representation using a "cross" defined by pairs
  // of start/end points
  std::vector<SPoint3> cross;

  // the STL mesh
  std::vector<SPoint2> stl_vertices;
  std::vector<int> stl_triangles;

  // a vertex array containing a geometrical representation of the
  // surface
  VertexArray *va_geom_triangles;

  // a array for accessing the transfinite vertices using a pair of
  // indices
  std::vector<std::vector<MVertex*> > transfinite_vertices;

  std::vector<MTriangle*> triangles;
  std::vector<MQuadrangle*> quadrangles;
  std::vector<MPolygon*> polygons;

  void addTriangle(MTriangle *t){ triangles.push_back(t); }
  void addQuadrangle(MQuadrangle *q){ quadrangles.push_back(q); }
  void addPolygon(MPolygon *p){ polygons.push_back(p); }
};

#endif