This file is indexed.

/usr/include/coin/ClpMatrixBase.hpp is in coinor-libclp-dev 1.12.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/* $Id: ClpMatrixBase.hpp 1525 2010-02-26 17:27:59Z mjs $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
#ifndef ClpMatrixBase_H
#define ClpMatrixBase_H

#include "CoinPragma.hpp"
#include "CoinFinite.hpp"

#include "CoinPackedMatrix.hpp"
class CoinIndexedVector;
class ClpSimplex;
class ClpModel;

/** Abstract base class for Clp Matrices

Since this class is abstract, no object of this type can be created.

If a derived class provides all methods then all Clp algorithms
should work.  Some can be very inefficient e.g. getElements etc is
only used for tightening bounds for dual and the copies are
deleted.  Many methods can just be dummy i.e. abort(); if not
all features are being used.  So if column generation was being done
then it makes no sense to do steepest edge so there would be
no point providing subsetTransposeTimes.
*/

class ClpMatrixBase  {

public:
     /**@name Virtual methods that the derived classes must provide */
     //@{
     /// Return a complete CoinPackedMatrix
     virtual CoinPackedMatrix * getPackedMatrix() const = 0;
     /** Whether the packed matrix is column major ordered or not. */
     virtual bool isColOrdered() const = 0;
     /** Number of entries in the packed matrix. */
     virtual CoinBigIndex getNumElements() const = 0;
     /** Number of columns. */
     virtual int getNumCols() const = 0;
     /** Number of rows. */
     virtual int getNumRows() const = 0;

     /** A vector containing the elements in the packed matrix. Note that there
         might be gaps in this list, entries that do not belong to any
         major-dimension vector. To get the actual elements one should look at
         this vector together with vectorStarts and vectorLengths. */
     virtual const double * getElements() const = 0;
     /** A vector containing the minor indices of the elements in the packed
         matrix. Note that there might be gaps in this list, entries that do not
         belong to any major-dimension vector. To get the actual elements one
         should look at this vector together with vectorStarts and
         vectorLengths. */
     virtual const int * getIndices() const = 0;

     virtual const CoinBigIndex * getVectorStarts() const = 0;
     /** The lengths of the major-dimension vectors. */
     virtual const int * getVectorLengths() const = 0 ;
     /** The length of a single major-dimension vector. */
     virtual int getVectorLength(int index) const ;
     /** Delete the columns whose indices are listed in <code>indDel</code>. */
     virtual void deleteCols(const int numDel, const int * indDel) = 0;
     /** Delete the rows whose indices are listed in <code>indDel</code>. */
     virtual void deleteRows(const int numDel, const int * indDel) = 0;
#ifndef CLP_NO_VECTOR
     /// Append Columns
     virtual void appendCols(int number, const CoinPackedVectorBase * const * columns);
     /// Append Rows
     virtual void appendRows(int number, const CoinPackedVectorBase * const * rows);
#endif
     /** Modify one element of packed matrix.  An element may be added.
         This works for either ordering If the new element is zero it will be
         deleted unless keepZero true */
     virtual void modifyCoefficient(int row, int column, double newElement,
                                    bool keepZero = false);
     /** Append a set of rows/columns to the end of the matrix. Returns number of errors
         i.e. if any of the new rows/columns contain an index that's larger than the
         number of columns-1/rows-1 (if numberOther>0) or duplicates
         If 0 then rows, 1 if columns */
     virtual int appendMatrix(int number, int type,
                              const CoinBigIndex * starts, const int * index,
                              const double * element, int numberOther = -1);

     /** Returns a new matrix in reverse order without gaps
         Is allowed to return NULL if doesn't want to have row copy */
     virtual ClpMatrixBase * reverseOrderedCopy() const {
          return NULL;
     }

     /// Returns number of elements in column part of basis
     virtual CoinBigIndex countBasis(const int * whichColumn,
                                     int & numberColumnBasic) = 0;
     /// Fills in column part of basis
     virtual void fillBasis(ClpSimplex * model,
                            const int * whichColumn,
                            int & numberColumnBasic,
                            int * row, int * start,
                            int * rowCount, int * columnCount,
                            CoinFactorizationDouble * element) = 0;
     /** Creates scales for column copy (rowCopy in model may be modified)
         default does not allow scaling
         returns non-zero if no scaling done */
     virtual int scale(ClpModel * , const ClpSimplex * = NULL) const {
          return 1;
     }
     /** Scales rowCopy if column copy scaled
         Only called if scales already exist */
     virtual void scaleRowCopy(ClpModel * ) const { }
     /// Returns true if can create row copy
     virtual bool canGetRowCopy() const {
          return true;
     }
     /** Realy really scales column copy
         Only called if scales already exist.
         Up to user to delete */
     inline virtual ClpMatrixBase * scaledColumnCopy(ClpModel * ) const {
          return this->clone();
     }

     /** Checks if all elements are in valid range.  Can just
         return true if you are not paranoid.  For Clp I will
         probably expect no zeros.  Code can modify matrix to get rid of
         small elements.
         check bits (can be turned off to save time) :
         1 - check if matrix has gaps
         2 - check if zero elements
         4 - check and compress duplicates
         8 - report on large and small
     */
     virtual bool allElementsInRange(ClpModel * ,
                                     double , double ,
                                     int = 15) {
          return true;
     }
     /** Set the dimensions of the matrix. In effect, append new empty
         columns/rows to the matrix. A negative number for either dimension
         means that that dimension doesn't change. Otherwise the new dimensions
         MUST be at least as large as the current ones otherwise an exception
         is thrown. */
     virtual void setDimensions(int numrows, int numcols);
     /** Returns largest and smallest elements of both signs.
         Largest refers to largest absolute value.
         If returns zeros then can't tell anything */
     virtual void rangeOfElements(double & smallestNegative, double & largestNegative,
                                  double & smallestPositive, double & largestPositive);

     /** Unpacks a column into an CoinIndexedvector
      */
     virtual void unpack(const ClpSimplex * model, CoinIndexedVector * rowArray,
                         int column) const = 0;
     /** Unpacks a column into an CoinIndexedvector
      ** in packed format
      Note that model is NOT const.  Bounds and objective could
      be modified if doing column generation (just for this variable) */
     virtual void unpackPacked(ClpSimplex * model,
                               CoinIndexedVector * rowArray,
                               int column) const = 0;
     /** Purely for column generation and similar ideas.  Allows
         matrix and any bounds or costs to be updated (sensibly).
         Returns non-zero if any changes.
     */
     virtual int refresh(ClpSimplex * ) {
          return 0;
     }

     // Really scale matrix
     virtual void reallyScale(const double * rowScale, const double * columnScale);
     /** Given positive integer weights for each row fills in sum of weights
         for each column (and slack).
         Returns weights vector
         Default returns vector of ones
     */
     virtual CoinBigIndex * dubiousWeights(const ClpSimplex * model, int * inputWeights) const;
     /** Adds multiple of a column into an CoinIndexedvector
         You can use quickAdd to add to vector */
     virtual void add(const ClpSimplex * model, CoinIndexedVector * rowArray,
                      int column, double multiplier) const = 0;
     /** Adds multiple of a column into an array */
     virtual void add(const ClpSimplex * model, double * array,
                      int column, double multiplier) const = 0;
     /// Allow any parts of a created CoinPackedMatrix to be deleted
     virtual void releasePackedMatrix() const = 0;
     /// Says whether it can do partial pricing
     virtual bool canDoPartialPricing() const;
     /// Returns number of hidden rows e.g. gub
     virtual int hiddenRows() const;
     /// Partial pricing
     virtual void partialPricing(ClpSimplex * model, double start, double end,
                                 int & bestSequence, int & numberWanted);
     /** expands an updated column to allow for extra rows which the main
         solver does not know about and returns number added.

         This will normally be a no-op - it is in for GUB but may get extended to
         general non-overlapping and embedded networks.

         mode 0 - extend
         mode 1 - delete etc
     */
     virtual int extendUpdated(ClpSimplex * model, CoinIndexedVector * update, int mode);
     /**
        utility primal function for dealing with dynamic constraints
        mode=0  - Set up before "update" and "times" for primal solution using extended rows
        mode=1  - Cleanup primal solution after "times" using extended rows.
        mode=2  - Check (or report on) primal infeasibilities
     */
     virtual void primalExpanded(ClpSimplex * model, int mode);
     /**
         utility dual function for dealing with dynamic constraints
         mode=0  - Set up before "updateTranspose" and "transposeTimes" for duals using extended
                   updates array (and may use other if dual values pass)
         mode=1  - Update dual solution after "transposeTimes" using extended rows.
         mode=2  - Compute all djs and compute key dual infeasibilities
         mode=3  - Report on key dual infeasibilities
         mode=4  - Modify before updateTranspose in partial pricing
     */
     virtual void dualExpanded(ClpSimplex * model, CoinIndexedVector * array,
                               double * other, int mode);
     /**
         general utility function for dealing with dynamic constraints
         mode=0  - Create list of non-key basics in pivotVariable_ using
                   number as numberBasic in and out
         mode=1  - Set all key variables as basic
         mode=2  - return number extra rows needed, number gives maximum number basic
         mode=3  - before replaceColumn
         mode=4  - return 1 if can do primal, 2 if dual, 3 if both
         mode=5  - save any status stuff (when in good state)
         mode=6  - restore status stuff
         mode=7  - flag given variable (normally sequenceIn)
         mode=8  - unflag all variables
         mode=9  - synchronize costs and bounds
         mode=10  - return 1 if there may be changing bounds on variable (column generation)
         mode=11  - make sure set is clean (used when a variable rejected - but not flagged)
         mode=12  - after factorize but before permute stuff
         mode=13  - at end of simplex to delete stuff

     */
     virtual int generalExpanded(ClpSimplex * model, int mode, int & number);
     /**
        update information for a pivot (and effective rhs)
     */
     virtual int updatePivot(ClpSimplex * model, double oldInValue, double oldOutValue);
     /** Creates a variable.  This is called after partial pricing and may modify matrix.
         May update bestSequence.
     */
     virtual void createVariable(ClpSimplex * model, int & bestSequence);
     /** Just for debug if odd type matrix.
         Returns number of primal infeasibilities. */
     virtual int checkFeasible(ClpSimplex * model, double & sum) const ;
     /// Returns reduced cost of a variable
     double reducedCost(ClpSimplex * model, int sequence) const;
     /// Correct sequence in and out to give true value (if both -1 maybe do whole matrix)
     virtual void correctSequence(const ClpSimplex * model, int & sequenceIn, int & sequenceOut) ;
     //@}

     //---------------------------------------------------------------------------
     /**@name Matrix times vector methods
        They can be faster if scalar is +- 1
        Also for simplex I am not using basic/non-basic split */
     //@{
     /** Return <code>y + A * x * scalar</code> in <code>y</code>.
         @pre <code>x</code> must be of size <code>numColumns()</code>
         @pre <code>y</code> must be of size <code>numRows()</code> */
     virtual void times(double scalar,
                        const double * x, double * y) const = 0;
     /** And for scaling - default aborts for when scaling not supported
         (unless pointers NULL when as normal)
     */
     virtual void times(double scalar,
                        const double * x, double * y,
                        const double * rowScale,
                        const double * columnScale) const;
     /** Return <code>y + x * scalar * A</code> in <code>y</code>.
         @pre <code>x</code> must be of size <code>numRows()</code>
         @pre <code>y</code> must be of size <code>numColumns()</code> */
     virtual void transposeTimes(double scalar,
                                 const double * x, double * y) const = 0;
     /** And for scaling - default aborts for when scaling not supported
         (unless pointers NULL when as normal)
     */
     virtual void transposeTimes(double scalar,
                                 const double * x, double * y,
                                 const double * rowScale,
                                 const double * columnScale,
                                 double * spare = NULL) const;
#if COIN_LONG_WORK
     // For long double versions (aborts if not supported)
     virtual void times(CoinWorkDouble scalar,
                        const CoinWorkDouble * x, CoinWorkDouble * y) const ;
     virtual void transposeTimes(CoinWorkDouble scalar,
                                 const CoinWorkDouble * x, CoinWorkDouble * y) const ;
#endif
     /** Return <code>x * scalar *A + y</code> in <code>z</code>.
         Can use y as temporary array (will be empty at end)
         Note - If x packed mode - then z packed mode
         Squashes small elements and knows about ClpSimplex */
     virtual void transposeTimes(const ClpSimplex * model, double scalar,
                                 const CoinIndexedVector * x,
                                 CoinIndexedVector * y,
                                 CoinIndexedVector * z) const = 0;
     /** Return <code>x *A</code> in <code>z</code> but
         just for indices in y.
         This is only needed for primal steepest edge.
         Note - z always packed mode */
     virtual void subsetTransposeTimes(const ClpSimplex * model,
                                       const CoinIndexedVector * x,
                                       const CoinIndexedVector * y,
                                       CoinIndexedVector * z) const = 0;
     /** Returns true if can combine transposeTimes and subsetTransposeTimes
         and if it would be faster */
     virtual bool canCombine(const ClpSimplex * ,
                             const CoinIndexedVector * ) const {
          return false;
     }
     /// Updates two arrays for steepest and does devex weights (need not be coded)
     virtual void transposeTimes2(const ClpSimplex * model,
                                  const CoinIndexedVector * pi1, CoinIndexedVector * dj1,
                                  const CoinIndexedVector * pi2,
                                  CoinIndexedVector * spare,
                                  double referenceIn, double devex,
                                  // Array for exact devex to say what is in reference framework
                                  unsigned int * reference,
                                  double * weights, double scaleFactor);
     /// Updates second array for steepest and does devex weights (need not be coded)
     virtual void subsetTimes2(const ClpSimplex * model,
                               CoinIndexedVector * dj1,
                               const CoinIndexedVector * pi2, CoinIndexedVector * dj2,
                               double referenceIn, double devex,
                               // Array for exact devex to say what is in reference framework
                               unsigned int * reference,
                               double * weights, double scaleFactor);
     /** Return <code>x *A</code> in <code>z</code> but
         just for number indices in y.
         Default cheats with fake CoinIndexedVector and
         then calls subsetTransposeTimes */
     virtual void listTransposeTimes(const ClpSimplex * model,
                                     double * x,
                                     int * y,
                                     int number,
                                     double * z) const;
     //@}
     //@{
     ///@name Other
     /// Clone
     virtual ClpMatrixBase * clone() const = 0;
     /** Subset clone (without gaps).  Duplicates are allowed
         and order is as given.
         Derived classes need not provide this as it may not always make
         sense */
     virtual ClpMatrixBase * subsetClone (
          int numberRows, const int * whichRows,
          int numberColumns, const int * whichColumns) const;
     /// Gets rid of any mutable by products
     virtual void backToBasics() {}
     /** Returns type.
         The types which code may need to know about are:
         1  - ClpPackedMatrix
         11 - ClpNetworkMatrix
         12 - ClpPlusMinusOneMatrix
     */
     inline int type() const {
          return type_;
     }
     /// Sets type
     void setType(int newtype) {
          type_ = newtype;
     }
     /// Sets up an effective RHS
     void useEffectiveRhs(ClpSimplex * model);
     /** Returns effective RHS offset if it is being used.  This is used for long problems
         or big gub or anywhere where going through full columns is
         expensive.  This may re-compute */
     virtual double * rhsOffset(ClpSimplex * model, bool forceRefresh = false,
                                bool check = false);
     /// If rhsOffset used this is iteration last refreshed
     inline int lastRefresh() const {
          return lastRefresh_;
     }
     /// If rhsOffset used this is refresh frequency (0==off)
     inline int refreshFrequency() const {
          return refreshFrequency_;
     }
     inline void setRefreshFrequency(int value) {
          refreshFrequency_ = value;
     }
     /// whether to skip dual checks most of time
     inline bool skipDualCheck() const {
          return skipDualCheck_;
     }
     inline void setSkipDualCheck(bool yes) {
          skipDualCheck_ = yes;
     }
     /** Partial pricing tuning parameter - minimum number of "objects" to scan.
         e.g. number of Gub sets but could be number of variables */
     inline int minimumObjectsScan() const {
          return minimumObjectsScan_;
     }
     inline void setMinimumObjectsScan(int value) {
          minimumObjectsScan_ = value;
     }
     /// Partial pricing tuning parameter - minimum number of negative reduced costs to get
     inline int minimumGoodReducedCosts() const {
          return minimumGoodReducedCosts_;
     }
     inline void setMinimumGoodReducedCosts(int value) {
          minimumGoodReducedCosts_ = value;
     }
     /// Current start of search space in matrix (as fraction)
     inline double startFraction() const {
          return startFraction_;
     }
     inline void setStartFraction(double value) {
          startFraction_ = value;
     }
     /// Current end of search space in matrix (as fraction)
     inline double endFraction() const {
          return endFraction_;
     }
     inline void setEndFraction(double value) {
          endFraction_ = value;
     }
     /// Current best reduced cost
     inline double savedBestDj() const {
          return savedBestDj_;
     }
     inline void setSavedBestDj(double value) {
          savedBestDj_ = value;
     }
     /// Initial number of negative reduced costs wanted
     inline int originalWanted() const {
          return originalWanted_;
     }
     inline void setOriginalWanted(int value) {
          originalWanted_ = value;
     }
     /// Current number of negative reduced costs which we still need
     inline int currentWanted() const {
          return currentWanted_;
     }
     inline void setCurrentWanted(int value) {
          currentWanted_ = value;
     }
     /// Current best sequence
     inline int savedBestSequence() const {
          return savedBestSequence_;
     }
     inline void setSavedBestSequence(int value) {
          savedBestSequence_ = value;
     }
     //@}


protected:

     /**@name Constructors, destructor<br>
        <strong>NOTE</strong>: All constructors are protected. There's no need
        to expose them, after all, this is an abstract class. */
     //@{
     /** Default constructor. */
     ClpMatrixBase();
     /** Destructor (has to be public) */
public:
     virtual ~ClpMatrixBase();
protected:
     // Copy
     ClpMatrixBase(const ClpMatrixBase&);
     // Assignment
     ClpMatrixBase& operator=(const ClpMatrixBase&);
     //@}


protected:
     /**@name Data members
        The data members are protected to allow access for derived classes. */
     //@{
     /** Effective RHS offset if it is being used.  This is used for long problems
         or big gub or anywhere where going through full columns is
         expensive */
     double * rhsOffset_;
     /// Current start of search space in matrix (as fraction)
     double startFraction_;
     /// Current end of search space in matrix (as fraction)
     double endFraction_;
     /// Best reduced cost so far
     double savedBestDj_;
     /// Initial number of negative reduced costs wanted
     int originalWanted_;
     /// Current number of negative reduced costs which we still need
     int currentWanted_;
     /// Saved best sequence in pricing
     int savedBestSequence_;
     /// type (may be useful)
     int type_;
     /// If rhsOffset used this is iteration last refreshed
     int lastRefresh_;
     /// If rhsOffset used this is refresh frequency (0==off)
     int refreshFrequency_;
     /// Partial pricing tuning parameter - minimum number of "objects" to scan
     int minimumObjectsScan_;
     /// Partial pricing tuning parameter - minimum number of negative reduced costs to get
     int minimumGoodReducedCosts_;
     /// True sequence in (i.e. from larger problem)
     int trueSequenceIn_;
     /// True sequence out (i.e. from larger problem)
     int trueSequenceOut_;
     /// whether to skip dual checks most of time
     bool skipDualCheck_;
     //@}
};
// bias for free variables
#define FREE_BIAS 1.0e1
// Acceptance criteria for free variables
#define FREE_ACCEPT 1.0e2

#endif