This file is indexed.

/usr/include/coin/ClpGubMatrix.hpp is in coinor-libclp-dev 1.12.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/* $Id: ClpGubMatrix.hpp 1525 2010-02-26 17:27:59Z mjs $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others.  All Rights Reserved.
#ifndef ClpGubMatrix_H
#define ClpGubMatrix_H


#include "CoinPragma.hpp"

#include "ClpPackedMatrix.hpp"
class ClpSimplex;
/** This implements Gub rows plus a ClpPackedMatrix.

    There will be a version using ClpPlusMinusOne matrix but
    there is no point doing one with ClpNetworkMatrix (although
    an embedded network is attractive).

*/

class ClpGubMatrix : public ClpPackedMatrix {

public:
     /**@name Main functions provided */
     //@{
     /** Returns a new matrix in reverse order without gaps (GUB wants NULL) */
     virtual ClpMatrixBase * reverseOrderedCopy() const;
     /// Returns number of elements in column part of basis
     virtual CoinBigIndex countBasis(const int * whichColumn,
                                     int & numberColumnBasic);
     /// Fills in column part of basis
     virtual void fillBasis(ClpSimplex * model,
                            const int * whichColumn,
                            int & numberColumnBasic,
                            int * row, int * start,
                            int * rowCount, int * columnCount,
                            CoinFactorizationDouble * element);
     /** Unpacks a column into an CoinIndexedvector
      */
     virtual void unpack(const ClpSimplex * model, CoinIndexedVector * rowArray,
                         int column) const ;
     /** Unpacks a column into an CoinIndexedvector
      ** in packed foramt
         Note that model is NOT const.  Bounds and objective could
         be modified if doing column generation (just for this variable) */
     virtual void unpackPacked(ClpSimplex * model,
                               CoinIndexedVector * rowArray,
                               int column) const;
     /** Adds multiple of a column into an CoinIndexedvector
         You can use quickAdd to add to vector */
     virtual void add(const ClpSimplex * model, CoinIndexedVector * rowArray,
                      int column, double multiplier) const ;
     /** Adds multiple of a column into an array */
     virtual void add(const ClpSimplex * model, double * array,
                      int column, double multiplier) const;
     /// Partial pricing
     virtual void partialPricing(ClpSimplex * model, double start, double end,
                                 int & bestSequence, int & numberWanted);
     /// Returns number of hidden rows e.g. gub
     virtual int hiddenRows() const;
     //@}

     /**@name Matrix times vector methods */
     //@{

     using ClpPackedMatrix::transposeTimes ;
     /** Return <code>x * scalar * A + y</code> in <code>z</code>.
     Can use y as temporary array (will be empty at end)
     Note - If x packed mode - then z packed mode
     Squashes small elements and knows about ClpSimplex */
     virtual void transposeTimes(const ClpSimplex * model, double scalar,
                                 const CoinIndexedVector * x,
                                 CoinIndexedVector * y,
                                 CoinIndexedVector * z) const;
     /** Return <code>x * scalar * A + y</code> in <code>z</code>.
     Can use y as temporary array (will be empty at end)
     Note - If x packed mode - then z packed mode
     Squashes small elements and knows about ClpSimplex.
     This version uses row copy*/
     virtual void transposeTimesByRow(const ClpSimplex * model, double scalar,
                                      const CoinIndexedVector * x,
                                      CoinIndexedVector * y,
                                      CoinIndexedVector * z) const;
     /** Return <code>x *A</code> in <code>z</code> but
     just for indices in y.
     Note - z always packed mode */
     virtual void subsetTransposeTimes(const ClpSimplex * model,
                                       const CoinIndexedVector * x,
                                       const CoinIndexedVector * y,
                                       CoinIndexedVector * z) const;
     /** expands an updated column to allow for extra rows which the main
         solver does not know about and returns number added if mode 0.
         If mode 1 deletes extra entries

         This active in Gub
     */
     virtual int extendUpdated(ClpSimplex * model, CoinIndexedVector * update, int mode);
     /**
        mode=0  - Set up before "update" and "times" for primal solution using extended rows
        mode=1  - Cleanup primal solution after "times" using extended rows.
        mode=2  - Check (or report on) primal infeasibilities
     */
     virtual void primalExpanded(ClpSimplex * model, int mode);
     /**
         mode=0  - Set up before "updateTranspose" and "transposeTimes" for duals using extended
                   updates array (and may use other if dual values pass)
         mode=1  - Update dual solution after "transposeTimes" using extended rows.
         mode=2  - Compute all djs and compute key dual infeasibilities
         mode=3  - Report on key dual infeasibilities
         mode=4  - Modify before updateTranspose in partial pricing
     */
     virtual void dualExpanded(ClpSimplex * model, CoinIndexedVector * array,
                               double * other, int mode);
     /**
         mode=0  - Create list of non-key basics in pivotVariable_ using
                   number as numberBasic in and out
         mode=1  - Set all key variables as basic
         mode=2  - return number extra rows needed, number gives maximum number basic
         mode=3  - before replaceColumn
         mode=4  - return 1 if can do primal, 2 if dual, 3 if both
         mode=5  - save any status stuff (when in good state)
         mode=6  - restore status stuff
         mode=7  - flag given variable (normally sequenceIn)
         mode=8  - unflag all variables
         mode=9  - synchronize costs
         mode=10  - return 1 if there may be changing bounds on variable (column generation)
         mode=11  - make sure set is clean (used when a variable rejected - but not flagged)
         mode=12  - after factorize but before permute stuff
         mode=13  - at end of simplex to delete stuff
     */
     virtual int generalExpanded(ClpSimplex * model, int mode, int & number);
     /**
        update information for a pivot (and effective rhs)
     */
     virtual int updatePivot(ClpSimplex * model, double oldInValue, double oldOutValue);
     /// Sets up an effective RHS and does gub crash if needed
     virtual void useEffectiveRhs(ClpSimplex * model, bool cheapest = true);
     /** Returns effective RHS offset if it is being used.  This is used for long problems
         or big gub or anywhere where going through full columns is
         expensive.  This may re-compute */
     virtual double * rhsOffset(ClpSimplex * model, bool forceRefresh = false,
                                bool check = false);
     /** This is local to Gub to allow synchronization:
         mode=0 when status of basis is good
         mode=1 when variable is flagged
         mode=2 when all variables unflagged (returns number flagged)
         mode=3 just reset costs (primal)
         mode=4 correct number of dual infeasibilities
         mode=5 return 4 if time to re-factorize
         mode=6  - return 1 if there may be changing bounds on variable (column generation)
         mode=7  - do extra restores for column generation
         mode=8  - make sure set is clean
         mode=9  - adjust lower, upper on set by incoming
     */
     virtual int synchronize(ClpSimplex * model, int mode);
     /// Correct sequence in and out to give true value
     virtual void correctSequence(const ClpSimplex * model, int & sequenceIn, int & sequenceOut) ;
     //@}



     /**@name Constructors, destructor */
     //@{
     /** Default constructor. */
     ClpGubMatrix();
     /** Destructor */
     virtual ~ClpGubMatrix();
     //@}

     /**@name Copy method */
     //@{
     /** The copy constructor. */
     ClpGubMatrix(const ClpGubMatrix&);
     /** The copy constructor from an CoinPackedMatrix. */
     ClpGubMatrix(const CoinPackedMatrix&);
     /** Subset constructor (without gaps).  Duplicates are allowed
         and order is as given */
     ClpGubMatrix (const ClpGubMatrix & wholeModel,
                   int numberRows, const int * whichRows,
                   int numberColumns, const int * whichColumns);
     ClpGubMatrix (const CoinPackedMatrix & wholeModel,
                   int numberRows, const int * whichRows,
                   int numberColumns, const int * whichColumns);

     /** This takes over ownership (for space reasons) */
     ClpGubMatrix(CoinPackedMatrix * matrix);

     /** This takes over ownership (for space reasons) and is the
         real constructor*/
     ClpGubMatrix(ClpPackedMatrix * matrix, int numberSets,
                  const int * start, const int * end,
                  const double * lower, const double * upper,
                  const unsigned char * status = NULL);

     ClpGubMatrix& operator=(const ClpGubMatrix&);
     /// Clone
     virtual ClpMatrixBase * clone() const ;
     /** Subset clone (without gaps).  Duplicates are allowed
         and order is as given */
     virtual ClpMatrixBase * subsetClone (
          int numberRows, const int * whichRows,
          int numberColumns, const int * whichColumns) const ;
     /** redoes next_ for a set.  */
     void redoSet(ClpSimplex * model, int newKey, int oldKey, int iSet);
     //@}
     /**@name gets and sets */
     //@{
     /// Status
     inline ClpSimplex::Status getStatus(int sequence) const {
          return static_cast<ClpSimplex::Status> (status_[sequence] & 7);
     }
     inline void setStatus(int sequence, ClpSimplex::Status status) {
          unsigned char & st_byte = status_[sequence];
          st_byte = static_cast<unsigned char>(st_byte & ~7);
          st_byte = static_cast<unsigned char>(st_byte | status);
     }
     /// To flag a variable
     inline void setFlagged( int sequence) {
          status_[sequence] = static_cast<unsigned char>(status_[sequence] | 64);
     }
     inline void clearFlagged( int sequence) {
          status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~64);
     }
     inline bool flagged(int sequence) const {
          return ((status_[sequence] & 64) != 0);
     }
     /// To say key is above ub
     inline void setAbove( int sequence) {
          unsigned char iStat = status_[sequence];
          iStat = static_cast<unsigned char>(iStat & ~24);
          status_[sequence] = static_cast<unsigned char>(iStat | 16);
     }
     /// To say key is feasible
     inline void setFeasible( int sequence) {
          unsigned char iStat = status_[sequence];
          iStat = static_cast<unsigned char>(iStat & ~24);
          status_[sequence] = static_cast<unsigned char>(iStat | 8);
     }
     /// To say key is below lb
     inline void setBelow( int sequence) {
          unsigned char iStat = status_[sequence];
          iStat = static_cast<unsigned char>(iStat & ~24);
          status_[sequence] = iStat;
     }
     inline double weight( int sequence) const {
          int iStat = status_[sequence] & 31;
          iStat = iStat >> 3;
          return static_cast<double> (iStat - 1);
     }
     /// Starts
     inline int * start() const {
          return start_;
     }
     /// End
     inline int * end() const {
          return end_;
     }
     /// Lower bounds on sets
     inline double * lower() const {
          return lower_;
     }
     /// Upper bounds on sets
     inline double * upper() const {
          return upper_;
     }
     /// Key variable of set
     inline int * keyVariable() const {
          return keyVariable_;
     }
     /// Backward pointer to set number
     inline int * backward() const {
          return backward_;
     }
     /// Number of sets (gub rows)
     inline int numberSets() const {
          return numberSets_;
     }
     /// Switches off dj checking each factorization (for BIG models)
     void switchOffCheck();
     //@}


protected:
     /**@name Data members
        The data members are protected to allow access for derived classes. */
     //@{
     /// Sum of dual infeasibilities
     double sumDualInfeasibilities_;
     /// Sum of primal infeasibilities
     double sumPrimalInfeasibilities_;
     /// Sum of Dual infeasibilities using tolerance based on error in duals
     double sumOfRelaxedDualInfeasibilities_;
     /// Sum of Primal infeasibilities using tolerance based on error in primals
     double sumOfRelaxedPrimalInfeasibilities_;
     /// Infeasibility weight when last full pass done
     double infeasibilityWeight_;
     /// Starts
     int * start_;
     /// End
     int * end_;
     /// Lower bounds on sets
     double * lower_;
     /// Upper bounds on sets
     double * upper_;
     /// Status of slacks
     mutable unsigned char * status_;
     /// Saved status of slacks
     unsigned char * saveStatus_;
     /// Saved key variables
     int * savedKeyVariable_;
     /// Backward pointer to set number
     int * backward_;
     /// Backward pointer to pivot row !!!
     int * backToPivotRow_;
     /// Change in costs for keys
     double * changeCost_;
     /// Key variable of set
     mutable int * keyVariable_;
     /** Next basic variable in set - starts at key and end with -(set+1).
         Now changes to -(nonbasic+1).
         next_ has extra space for 2* longest set */
     mutable int * next_;
     /// Backward pointer to index in CoinIndexedVector
     int * toIndex_;
     // Reverse pointer from index to set
     int * fromIndex_;
     /// Pointer back to model
     ClpSimplex * model_;
     /// Number of dual infeasibilities
     int numberDualInfeasibilities_;
     /// Number of primal infeasibilities
     int numberPrimalInfeasibilities_;
     /** If pricing will declare victory (i.e. no check every factorization).
         -1 - always check
         0  - don't check
         1  - in don't check mode but looks optimal
     */
     int noCheck_;
     /// Number of sets (gub rows)
     int numberSets_;
     /// Number in vector without gub extension
     int saveNumber_;
     /// Pivot row of possible next key
     int possiblePivotKey_;
     /// Gub slack in (set number or -1)
     int gubSlackIn_;
     /// First gub variables (same as start_[0] at present)
     int firstGub_;
     /// last gub variable (same as end_[numberSets_-1] at present)
     int lastGub_;
     /** type of gub - 0 not contiguous, 1 contiguous
         add 8 bit to say no ubs on individual variables */
     int gubType_;
     //@}
};

#endif