This file is indexed.

/usr/include/coin/CbcSOS.hpp is in coinor-libcbc-dev 2.5.0-2.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Edwin 11/9/2009-- carved out of CbcBranchActual
#ifndef CbcSOS_H
#define CbcSOS_H

/** \brief Branching object for Special Ordered Sets of type 1 and 2.

  SOS1 are an ordered set of variables where at most one variable can be
  non-zero. SOS1 are commonly defined with binary variables (interpreted as
  selection between alternatives) but this is not necessary.  An SOS1 with
  all binary variables is a special case of a clique (setting any one
  variable to 1 forces all others to 0).

  In theory, the implementation makes no assumptions about integrality in
  Type 1 sets. In practice, there are places where the code seems to have been
  written with a binary SOS mindset. Current development of SOS branching
  objects is proceeding in OsiSOS.

  SOS2 are an ordered set of variables in which at most two consecutive
  variables can be non-zero and must sum to 1 (interpreted as interpolation
  between two discrete values). By definition the variables are non-integer.
*/

class CbcSOS : public CbcObject {

public:

    // Default Constructor
    CbcSOS ();

	/** \brief Constructor with SOS type and member information

    Type specifies SOS 1 or 2. Identifier is an arbitrary value.

    Which should be an array of variable indices with numberMembers entries.
    Weights can be used to assign arbitrary weights to variables, in the order
    they are specified in which. If no weights are provided, a default array of
    0, 1, 2, ... is generated.
	*/

    CbcSOS (CbcModel * model, int numberMembers,
            const int * which, const double * weights, int identifier,
            int type = 1);

    // Copy constructor
    CbcSOS ( const CbcSOS &);

    /// Clone
    virtual CbcObject * clone() const;

    // Assignment operator
    CbcSOS & operator=( const CbcSOS& rhs);

    // Destructor
    virtual ~CbcSOS ();

    /// Infeasibility - large is 0.5
    virtual double infeasibility(const OsiBranchingInformation * info,
                                 int &preferredWay) const;

    using CbcObject::feasibleRegion ;
    /// This looks at solution and sets bounds to contain solution
    virtual void feasibleRegion();

    /// Creates a branching object
    virtual CbcBranchingObject * createCbcBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) ;



    /** Pass in information on branch just done and create CbcObjectUpdateData instance.
        If object does not need data then backward pointer will be NULL.
        Assumes can get information from solver */
    virtual CbcObjectUpdateData createUpdateInformation(const OsiSolverInterface * solver,
            const CbcNode * node,
            const CbcBranchingObject * branchingObject);
    /// Update object by CbcObjectUpdateData
    virtual void updateInformation(const CbcObjectUpdateData & data) ;
    using CbcObject::solverBranch ;
    /** Create an OsiSolverBranch object

        This returns NULL if branch not represented by bound changes
    */
    virtual OsiSolverBranch * solverBranch() const;
    /// Redoes data when sequence numbers change
    virtual void redoSequenceEtc(CbcModel * model, int numberColumns, const int * originalColumns);

    /// Construct an OsiSOS object
    OsiSOS * osiObject(const OsiSolverInterface * solver) const;
    /// Number of members
    inline int numberMembers() const {
        return numberMembers_;
    }

    /// Members (indices in range 0 ... numberColumns-1)
    inline const int * members() const {
        return members_;
    }

    /// SOS type
    inline int sosType() const {
        return sosType_;
    }
    /// Down number times
    inline int numberTimesDown() const {
        return numberTimesDown_;
    }
    /// Up number times
    inline int numberTimesUp() const {
        return numberTimesUp_;
    }

    /** Array of weights */
    inline const double * weights() const {
        return weights_;
    }

    /// Set number of members
    inline void setNumberMembers(int n) {
        numberMembers_ = n;
    }

    /// Members (indices in range 0 ... numberColumns-1)
    inline int * mutableMembers() const {
        return members_;
    }

    /** Array of weights */
    inline double * mutableWeights() const {
        return weights_;
    }

    /** \brief Return true if object can take part in normal heuristics
    */
    virtual bool canDoHeuristics() const {
        return (sosType_ == 1 && integerValued_);
    }
    /// Set whether set is integer valued or not
    inline void setIntegerValued(bool yesNo) {
        integerValued_ = yesNo;
    }
private:
    /// data

    /// Members (indices in range 0 ... numberColumns-1)
    int * members_;
  /** \brief Weights for individual members

    Arbitrary weights for members. Can be used to attach meaning to variable
    values independent of objective coefficients. For example, if the SOS set
    comprises binary variables used to choose a facility of a given size, the
    weight could be the corresponding facilty size. Fractional values of the
    SOS variables can then be used to estimate ideal facility size.

    Weights cannot be completely arbitrary. From the code, they must be
    differ by at least 1.0e-7
  */

    double * weights_;
    /// Current pseudo-shadow price estimate down
    mutable double shadowEstimateDown_;
    /// Current pseudo-shadow price estimate up
    mutable double shadowEstimateUp_;
    /// Down pseudo ratio
    double downDynamicPseudoRatio_;
    /// Up pseudo ratio
    double upDynamicPseudoRatio_;
    /// Number of times we have gone down
    int numberTimesDown_;
    /// Number of times we have gone up
    int numberTimesUp_;
    /// Number of members
    int numberMembers_;
    /// SOS type
    int sosType_;
    /// Whether integer valued
    bool integerValued_;
};

/** Branching object for Special ordered sets

    Variable_ is the set id number (redundant, as the object also holds a
    pointer to the set.
 */
class CbcSOSBranchingObject : public CbcBranchingObject {

public:

    // Default Constructor
    CbcSOSBranchingObject ();

    // Useful constructor
    CbcSOSBranchingObject (CbcModel * model,  const CbcSOS * clique,
                           int way,
                           double separator);

    // Copy constructor
    CbcSOSBranchingObject ( const CbcSOSBranchingObject &);

    // Assignment operator
    CbcSOSBranchingObject & operator=( const CbcSOSBranchingObject& rhs);

    /// Clone
    virtual CbcBranchingObject * clone() const;

    // Destructor
    virtual ~CbcSOSBranchingObject ();

    using CbcBranchingObject::branch ;
    /// Does next branch and updates state
    virtual double branch();
    /** Update bounds in solver as in 'branch' and update given bounds.
        branchState is -1 for 'down' +1 for 'up' */
    virtual void fix(OsiSolverInterface * solver,
                     double * lower, double * upper,
                     int branchState) const ;

    /** Reset every information so that the branching object appears to point to
        the previous child. This method does not need to modify anything in any
        solver. */
    virtual void previousBranch() {
        CbcBranchingObject::previousBranch();
        computeNonzeroRange();
    }

    using CbcBranchingObject::print ;
    /** \brief Print something about branch - only if log level high
    */
    virtual void print();

    /** Return the type (an integer identifier) of \c this */
    virtual CbcBranchObjType type() const {
        return SoSBranchObj;
    }

    /** Compare the original object of \c this with the original object of \c
        brObj. Assumes that there is an ordering of the original objects.
        This method should be invoked only if \c this and brObj are of the same
        type.
        Return negative/0/positive depending on whether \c this is
        smaller/same/larger than the argument.
    */
    virtual int compareOriginalObject(const CbcBranchingObject* brObj) const;

    /** Compare the \c this with \c brObj. \c this and \c brObj must be os the
        same type and must have the same original object, but they may have
        different feasible regions.
        Return the appropriate CbcRangeCompare value (first argument being the
        sub/superset if that's the case). In case of overlap (and if \c
        replaceIfOverlap is true) replace the current branching object with one
        whose feasible region is the overlap.
     */
    virtual CbcRangeCompare compareBranchingObject
    (const CbcBranchingObject* brObj, const bool replaceIfOverlap = false);

    /** Fill out the \c firstNonzero_ and \c lastNonzero_ data members */
    void computeNonzeroRange();

private:
    /// data
    const CbcSOS * set_;
    /// separator
    double separator_;
    /** The following two members describe the range in the members_ of the
        original object that whose upper bound is not fixed to 0. This is not
        necessary for Cbc to function correctly, this is there for heuristics so
        that separate branching decisions on the same object can be pooled into
        one branching object. */
    int firstNonzero_;
    int lastNonzero_;
};
#endif