This file is indexed.

/usr/games/xracer-mktrack is in xracer-tools 0.96.9.1-6.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/perl -w
# XRACER (C) 1999-2000 Richard W.M. Jones <rich@annexia.org> and other AUTHORS
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#
# $Id: xracer-mktrack.pl,v 1.9 2000/01/01 15:51:41 rich Exp $

# You have created the basic track shape in Blender and saved it
# as a VideoScape file. This file defines the basic shape of the
# track. This basic shape defines the surfaces which exert their
# levitation effect on the craft. At this stage, we are NOT talking
# about what the track actually looks like, or any textures, etc.
# (Although in the common case, these two things can be the same).
# This script takes this information and builds the C file necessary
# for XRacer to work out what forces are exerted on the craft at
# each point on the track.

use strict;

use Getopt::Long;

use lib '../../XRacer/blib/lib'; # So you can run this without installing it.
use XRacer::Math;

# Read command line arguments.
my $nr_steps;
my $tubefilename;
my $coutputfilename;
my $verbose;
my $help;

GetOptions ("steps=i" => \$nr_steps,
	    "tubefile=s" => \$tubefilename,
	    "outputc=s" => \$coutputfilename,
	    "verbose" => \$verbose,
	    "help|?" => \$help);

if ($help)
  {
    print STDERR "$0 --steps STEPS [--outputc OUTPUTFILE] [--verbose] --tubefile TUBEFILE [INPUTFILE]\n";
    print STDERR "where: STEPS is the number of vertices in each segment\n";
    print STDERR "       OUTPUTFILE is the C file to write\n";
    print STDERR "       TUBEFILE is the tube file generated by mktube prog\n";
    print STDERR "       INPUTFILE is the input VideoScape file\n";
    exit 1;
  }

die "--steps argument is required" if !$nr_steps;
die "--tubefile argument is required" if !$tubefilename;

# Read the segments from the tubefile.
my $segmentsref = do $tubefilename
  or die "$tubefilename: $!";
my @segments = @$segmentsref;

print "number of segments in tube file: ", scalar (@segments), "\n"
  if $verbose;

# Read input lines.
my $state = "expect 3DG1";
my $vcount;
my $nr_segments;
my @vertices = ();
my @faces = ();

while (<>)
  {
    s/[\n\r]+$//g;		# Removes trailing CR, LF.

    if ($state eq "expect 3DG1")
      {
	die "expecting first line to be 3DG1" if $_ ne "3DG1";
	$state = "expect vcount";
      }
    elsif ($state eq "expect vcount")
      {
	die "expecting vertex count" if $_ !~ m/^[1-9][0-9]*$/;

	$vcount = $_;

	# Check that steps divides number of vertices.
	die "number of steps must divide number of vertices ($vcount)"
	  if ($vcount / $nr_steps != int ($vcount / $nr_steps));

	$nr_segments = $vcount / $nr_steps;

	die "number of segments found does not match tube file"
	  if $nr_segments != @segments;

	$state = "reading vertices";
      }
    elsif ($state eq "reading vertices")
      {
	my @vs = split /[ \t]+/, $_;
	push @vertices, \@vs;
	$vcount--;

	$state = "reading faces" if $vcount == 0;
      }
    elsif ($state eq "reading faces")
      {
	my @fs = split /[ \t]+/, $_;
	die "oops - expecting only four-sided faces"
	  if $fs[0] != 4;
	push @faces, { 'vertices' => [ $fs[1], $fs[2], $fs[3], $fs[4] ] };
      }
  }

# Print a summary of the file.
print "number of vertices: ", scalar (@vertices), "\n" if $verbose;
print "number of segments: $nr_segments\n" if $verbose;
print "number of faces: ", scalar (@faces), "\n" if $verbose;

# For convenience, number each face and also convert it to
# a set of plane coefficients.
for (my $i = 0; $i < @faces; ++$i)
  {
    $faces[$i]->{n} = $i;
    $faces[$i]->{faceplane}
    = plane_coefficients ($vertices[$faces[$i]->{vertices}->[0]],
			  $vertices[$faces[$i]->{vertices}->[1]],
			  $vertices[$faces[$i]->{vertices}->[2]]);
  }

# Map faces into segments.
foreach (@segments) { $_->{faces} = [] };

my $face;
foreach $face (@faces)
  {
    # Map vertex numbers to segment numbers.
    my @sns = map { int ($_ / $nr_steps) } @{$face->{vertices}};

    #print "segments: ", join (" ", @sns), "\n" if $verbose;

    # Take the minimum and maximum segment numbers.
    my $min_seg = $nr_segments+1;
    foreach (@sns) { $min_seg = $_ if $_ < $min_seg }
    my $max_seg = -1;
    foreach (@sns) { $max_seg = $_ if $_ > $max_seg }

    # The minimum segment number must be max segment number - 1 (but
    # take into account the wrap-around case ...)
    my $segnum;
    if ($min_seg == $max_seg)	# Equal is OK too.
      {
	$segnum = $min_seg;
      }
    elsif ($min_seg == $max_seg-1)
      {
	$segnum = $min_seg;
      }
    elsif ($min_seg == 0 && $max_seg == $nr_segments-1) # wraparound case
      {
	$segnum = $nr_segments-1;
      }
    else
      {
	die "oops - track face covers more than 1 segment";
      }

    #print "putting it into segment: $segnum\n" if $verbose;

    # Put the face into the segment.
    my $facesref = $segments[$segnum]->{faces};
    push @$facesref, $face;
  }

# Examine each face in turn and create the list of planes.
foreach $face (@faces)
  {
    # Get the four vertices from the face.
    my $v0 = $vertices[$face->{vertices}->[0]];
    my $v1 = $vertices[$face->{vertices}->[1]];
    my $v2 = $vertices[$face->{vertices}->[2]];
    my $v3 = $vertices[$face->{vertices}->[3]];

    # Construct the midpoint of the face (point MP in diagram).
    my $mp = midpoint ($v0, $v1, $v2, $v3);

    # Construct a plane from the face.
    my $faceplane = plane_coefficients ($v2, $v1, $v0);

    # Construct a unit normal vector to the face (vector MQ-MP in diagram).
    my $n = unit_normal ($faceplane);

    # Construct midpoint of plane one unit normal from face (point MQ).
    my $mq = sum_vectors ($mp, $n);

    # Construct points V4, ..., V7 (see diagram).
    my $v4 = sum_vectors ($v0, $n);
    my $v5 = sum_vectors ($v1, $n);
    my $v6 = sum_vectors ($v2, $n);
    my $v7 = sum_vectors ($v3, $n);

    # Points V8, ..., V11 are just points V4, ..., V7 extended
    # outwards by a small percentage. So, for example,
    # V8 = MQ + (V4 - MQ) * (expansion_percentage / 100)
    # where expansion_percentage is, perhaps, 110.

    # XXX Constant!
    my $expansion = 1.1;

    my $v8 = sum_vectors ($mq,
			  multiply_scalar_vector ($expansion,
			  subtract_vectors ($v4, $mq)));
    my $v9 = sum_vectors ($mq,
			  multiply_scalar_vector ($expansion,
                          subtract_vectors ($v5, $mq)));
    my $v10 = sum_vectors ($mq,
			   multiply_scalar_vector ($expansion,
			   subtract_vectors ($v6, $mq)));
    my $v11 = sum_vectors ($mq,
			   multiply_scalar_vector ($expansion,
                           subtract_vectors ($v7, $mq)));

    if ($verbose)
      {
	print "face:  ", cinitializer ($v0, $v1, $v2, $v3), "\n";
	print "inner: ", cinitializer ($v4, $v5, $v6, $v7), "\n";
	print "outer: ", cinitializer ($v8, $v9, $v10, $v11), "\n";
      }

    # Now we can construct the planes for real (see right
    # hand side of diagram). For example, one plane is
    # V0, V1, V9, V8
    my $plane0 = plane_coefficients ($v8, $v0, $v1);
    my $plane1 = plane_coefficients ($v9, $v1, $v2);
    my $plane2 = plane_coefficients ($v10, $v2, $v3);
    my $plane3 = plane_coefficients ($v11, $v3, $v0);

    # Assertion: Check that the midpoints $mp and $mq are both
    # inside all of the planes. This is just a sanity check
    # on the above calculations.
    die "assertion failed: midpoints not inside planes"
      if distance_point_to_plane ($plane0, $mp) < 0 ||
	distance_point_to_plane ($plane0, $mq) < 0 ||
	distance_point_to_plane ($plane1, $mp) < 0 ||
	distance_point_to_plane ($plane1, $mq) < 0 ||
	distance_point_to_plane ($plane2, $mp) < 0 ||
	distance_point_to_plane ($plane2, $mq) < 0 ||
	distance_point_to_plane ($plane3, $mp) < 0 ||
	distance_point_to_plane ($plane3, $mq) < 0;

    # Store these planes in the face description.
    $face->{planes} = [ $plane0, $plane1, $plane2, $plane3 ];
  }

# Save what we have to the C output file.
if ($coutputfilename)
  {
    open C, ">$coutputfilename"
      or die "$coutputfilename: $!";

    print C "/* This file describes the shape of the track itself.\n * It is automatically generated.\n */\n\n#include \"common.h\"\n\n";

    # Save a list of vertices.
    print C "int nr_face_vertices = ", scalar (@vertices), ";\n";

    print C "GLfloat face_vertices[][3] = ",
    cinitializer (@vertices), ";\n";

    # Construct the list of faces.
    print C "int nr_faces = ", scalar (@faces), ";\n";

    print C "struct xrFace faces[] = {\n";

    print C join (",\n",
		  map ({
			my $faceplane = $_->{faceplane};
			my $planes = $_->{planes};
			my $vertices = $_->{vertices};

			"{ " . cinitializer (@$faceplane) . ", " .
			cinitializer (@$planes) . ", " .
			cinitializer (@$vertices) . " }"
		       } @faces));

    print C "};\n";

    # Construct the mapping of segments onto faces.
    for (my $i = 0; $i < @segments; ++$i)
      {
	print C "static int _faces$i [] = ",
	cinitializer (map { $_->{n} } @{$segments[$i]->{faces}}), ";\n";
      }

    print C "struct xrSegmentFaces segment_to_faces[] = {\n";

    my $i = 0;
    print C join (",\n",
		  map ({
			my $faces = $_->{faces};
			my $nr_faces = @$faces;

			"{ " . $nr_faces . ", _faces" . $i++ . " }"
		       } @segments));

    print C "};\n";

    print C "/* End of file. */\n";

    close C;
  }

exit 0;

#----------------------------------------------------------------------

# This small helper function takes a list of either numbers of
# array refs, and returns an equivalent C string for initializing
# a C multi-dimensional array or structure.
sub cinitializer
  {
    return "{ " . join (", ",
			map ({ ref ($_) eq 'ARRAY' ? cinitializer (@$_) : $_ }
			     @_)) . " }";
  }

#----------------------------------------------------------------------

sub is_cbc
  {
    my $plane0 = shift;
    my $plane1 = shift;
    my $cylinder = shift;

    # Calculate line of intersection of the two planes.
    my $intersection = intersection_of_two_planes ($plane0,
						   $plane1);

    return line_intersects_cylinder ($intersection, $cylinder);
  }

# Return true if $plane1 is inside $plane0. Both planes are
# CBC-related.
#
# Since the planes are CBC-related, we know that they do
# not intersect at any points within the cylinder. Therefore
# we can simply pick any point on $plane1 which is inside
# the cylinder and test that point for insidedness with
# respect to $plane0. The problem is to find a point inside
# the cylinder on $plane1. 
sub is_inside
  {
    my $plane0 = shift;
    my $plane1 = shift;
    my $cylinder = shift;

    # XXXXXXXXXXXXXXXXXXX



  }

# Build a decision tree, recursively. This function takes the
# following arguments:
#   $current_depth
#   $max_depthref   (reference to $max_depth variable)
#   $nr_nodesref    (reference to $nr_nodes variable)
#   $planesref      (reference to list of planes left -- DO NOT CHANGE THIS!)
#   $insideref      (references to inside planes -- DO NOT CHANGE THIS!)
#   $cylinder       (bounding cylinder)
# It returns a tree.
sub build_decision_tree
  {
    my $current_depth = shift;
    my $max_depthref = shift;
    my $nr_nodesref = shift;
    my $planesref = shift;
    my $insideref = shift;
    my $cylinder = shift;

    # Update global $max_depth variable.
    $$max_depthref = $current_depth if $$max_depthref < $current_depth;

    # Update global $nr_nodes variable.
    $$nr_nodesref++;

    my %node = ();

    # Base case: no planes left: build the list of faces now.
    if (@$planesref == 0)
      {
	$node{type} = "base";

	# Find out which faces are fully inside (all four planes inside).
	my %inside_count = ();
	my @faces_inside = ();

	foreach (@$insideref)
	  {
	    if (exists $inside_count{$_->{face}})
	      {
		$inside_count{$_->{face}}++;
	      }
	    else
	      {
		$inside_count{$_->{face}} = 0;
	      }
	  }

	foreach (keys %inside_count)
	  {
	    if ($inside_count{$_} == 4)
	      {
		push @faces_inside, $_;
	      }
	    elsif ($inside_count{$_} > 4)
	      {
		die "oops: face $_ has inside_count == ",
		  $inside_count{$_};
	      }
	  }

	# Construct the base node.
	$node{faces} = \@faces_inside;

	print "constructing base node, faces == { ",
	  join (", ", @faces_inside), " }\n" if $verbose;
      }
    # Recursive case: pick a plane and build an interior node.
    else
      {
	$node{type} = "interior";

	# Pick a plane at random. Well, OK, pick the first plane.
	my $plane = $planesref->[0];

	# Here we build up:
	# (1) a list of CBC-related planes inside $plane.
	# (2) a list of CBC-related planes outside $plane.
	# (3) a list of non-CBC-related planes.
	my @cbc_related_inside = ();
	my @cbc_related_outside = ();
	my @not_cbc_related = ();

	for (my $i = 1; $i < @$planesref; $i++)
	  {
	    if (is_cbc ($plane->{plane}, $planesref->[$i]->{plane},
			$cylinder))
	      {
		if (is_inside ($plane->{plane}, $planesref->[$i]->{plane},
			       $cylinder))
		  {
		    push @cbc_related_inside, $planesref->[$i];
		  }
		else
		  {
		    push @cbc_related_outside, $planesref->[$i];
		  }
	      }
	    else
	      {
		push @not_cbc_related, $planesref->[$i];
	      }
	  }

	# Build the inside tree.
	my @remaining_planes = ();
	push @remaining_planes, @not_cbc_related;
	my @inside_planes = ();
	push @inside_planes, @$insideref, @cbc_related_inside;

	my $inside_tree = build_decision_tree ($current_depth+1,
					       $max_depthref,
					       \@remaining_planes,
					       \@inside_planes,
					       $cylinder);

	# Build the outside tree.
	@remaining_planes = ();
	push @remaining_planes, @not_cbc_related, @cbc_related_outside;
	@inside_planes = ();
	push @inside_planes, @$insideref;

	my $outside_tree = build_decision_tree ($current_depth+1,
						$max_depthref,
						\@remaining_planes,
						\@inside_planes,
						$cylinder);

	$node{inside} = $inside_tree;
	$node{outside} = $outside_tree;
      }

    return \%node;
  }