/usr/share/texmf-texlive/metapost/mp3d/3dpoly.mp is in texlive-metapost 2009-15.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | %%\input epsf
%%\def\newpage{\vfill\eject}
%%\def\vc#1{$\vcenter{#1}$}
%%\def\title#1{\hrule\vskip1mm#1\par\vskip1mm\hrule\vskip5mm}
%%\def\figure#1{\par\centerline{\epsfbox{#1}}}
%%\title{{\bf 3DPOLY.MP: DEFINITION OF REGULAR CONVEX POLYHEDRA IN METAPOST}}
%% version 1.34, 17 August 2003
%% {\bf Denis Roegel} ({\tt roegel@loria.fr})
%%
%%This package defines the five regular convex polyhedra classes and
%%must be used with the {\bf 3d} package.
if known three_d_poly_version:
expandafter endinput % avoids loading this package twice
fi;
message "*** 3dpoly, v1.34 (c) D. Roegel, 17 August 2003 ***";
numeric three_d_poly_version;
three_d_poly_version=1.34;
%%Each object definition is parameterized by
%%an instance identification.
%%All polyhedra are normalized (centered on the origin and inscriptible
%%in a sphere of radius 1).
%%The polyhedra are defined with a certain number of points and faces.
%%The points comprise both the vertices and the center of the object.
%%It might be useful to remind the Euler formula linking
%%the number of faces $f$,
%%vertices $v$ and edges $e$ in polyhedra with no hole in dimension 3:
%%$f+v-e=2$. This can be verified in the following table:
%%\centerline{\vbox{\halign{\quad#\hfil\quad&&\quad\hfil#\quad\cr
%% \omit \hfil type\hfil&\omit\hfil faces\hfil
%% &\omit\hfil vertices\hfil&\omit\hfil edges\hfil\cr
%% tetrahedron&4&4&6\cr
%% cube&6&8&12\cr
%% octahedron&8&6&12\cr
%% dodecahedron&12&20&30\cr
%% icosahedron&20&12&30\cr}}}
%%For more details, see the documentation enclosed in the distribution.
%%\newpage\title{TETRAHEDRON (4 faces)\kern1cm\epsfbox{tetra.ps}}
%% Construction of a tetrahedron:
%% One face is \vc{\epsfbox{vect-fig.1}} with $h=c\sqrt{3}/2$
%% The angle $\alpha$ between two faces is given by
%% $\sin(\alpha/2)={\displaystyle c/2\over \displaystyle c\sqrt{3}/2}=1/\sqrt3$
%% \figure{vect-fig.2}
def set_tetrahedron_points(expr inst)=
set_point(1)(0,0,0);set_point(2)(1,0,0);
set_point(3)(cosd(60),sind(60),0);% $60=360/6$
sinan=1/sqrt(3);cosan=sqrt(1-sinan**2);
an=180-2*angle((cosan,sinan));
new_face_point(4,1,2,3,an);
normalize_obj(inst)(1,2,3,4);
set_point(5)(0,0,0);% center of tetrahedron
enddef;
vardef def_tetrahedron(expr inst)=
new_obj_points(inst,5);% 4 vertices and the center
new_obj_faces(inst,4);% 4 faces in the definition
set_tetrahedron_points(inst);
set_obj_face(1,"1,2,4","b4fefe");
set_obj_face(2,"2,3,4","b49bc0");
set_obj_face(3,"1,4,3","b4c8fe");
set_obj_face(4,"1,3,2","b4fe40");
enddef;
%%\newpage\title{CUBE (HEXAHEDRON) (6 faces)\kern1cm\epsfbox{cube.ps}}
%%The definition of a cube is straightforward.
def set_cube_points(expr inst)=
set_point(1)(0,0,0);
set_point(2)(1,0,0);
set_point(3)(1,1,0);
set_point(4)(0,1,0);
set_point(5)(0,0,1);
set_point(6)(1,0,1);
set_point(7)(1,1,1);
set_point(8)(0,1,1);
normalize_obj(inst)(1,7);% 1 and 7 are opposite vertices
set_point(9)(0,0,0);% center of cube
enddef;
vardef def_cube(expr inst)=
new_obj_points(inst,9);% 8 vertices and the center
new_obj_faces(inst,6);% 6 faces in the definition
set_cube_points(inst);
set_obj_face(1,"1,2,6,5","b4fe40");
set_obj_face(2,"2,3,7,6","45d040");
set_obj_face(3,"4,8,7,3","45a114");
set_obj_face(4,"1,5,8,4","45a1d4");
set_obj_face(5,"5,6,7,8","4569d4");
set_obj_face(6,"4,3,2,1","112da1");
enddef;
%%\newpage\title{OCTAHEDRON (8 faces)\kern1cm\epsfbox{octa.ps}}
%% A section of a pyramid is: \vc{\epsfbox{vect-fig.3}}
%% The height of this pyramid is given
%% by $H^2={(c\sqrt3/2)}^2-{(c/2)}^2=c^2/2$, hence $H=c/\sqrt2$
def set_octahedron_points(expr inst)=
set_point(1)(0,0,0);
set_point(2)(1,0,0);
set_point(3)(1,1,0);
set_point(4)(0,1,0);
set_point(5)(.5,.5,1/sqrt(2));
set_point(6)(.5,.5,-1/sqrt(2));
normalize_obj(inst)(5,6);% 5 and 6 are opposite vertices
set_point(7)(0,0,0);% center of octahedron
enddef;
vardef def_octahedron(expr inst)=
new_obj_points(inst,7);% 6 vertices and the center
new_obj_faces(inst,8);% 8 faces in the definition
set_octahedron_points(inst);
set_obj_face(1,"1,2,5","b4fefe");
set_obj_face(2,"2,3,5","45d040");
set_obj_face(3,"3,4,5","4569d4");
set_obj_face(4,"4,1,5","b49bc0");
set_obj_face(5,"6,1,4","45a1d4");
set_obj_face(6,"6,2,1","b4c8fe");
set_obj_face(7,"6,3,2","b49b49");
set_obj_face(8,"6,4,3","112da1");
enddef;
%%\newpage\title{DODECAHEDRON (12 faces)\kern1cm\epsfbox{dodeca.ps}}
%% Two adjacent faces (pentagons) of the dodecahedron are as follows:
%%\figure{vect-fig.13}
%% The angle between the faces is the angle between $\overrightarrow{OA}$
%% and $\overrightarrow{OB}$.
%% $OA=OB=d_3$ as defined in \figure{vect-fig.14}
%% $d_1=2r\sin(\pi/5)$, $d_2=2r\sin(2\pi/5)$
%% and $d_3=d_1\sin(2\pi/5)=2r\sin(\pi/5)\sin(2\pi/5)$
%%
%% The angle $\alpha$ is defined by the following conditions:
%% \figure{vect-fig.15}
%% Thus $d_2^2=d_3^2+d_3^2-2d_3^2\cos\alpha$, which leads to
%% $\cos\alpha=1-{\displaystyle d_2^2\over\displaystyle2d_3^2}
%% =-{\displaystyle\cos(2\pi/5)\over\displaystyle2\sin^2(\pi/5)}$
%%\newpage
def set_dodecahedron_points(expr inst)=
new_points(fc)(10);% face centers
set_point_(fc1,0,0,0);set_point(1)(1,0,0);
set_point(2)(cosd(72),sind(72),0);% 72=360/5
rotate_in_plane(3,fc1,1,2);
rotate_in_plane(4,fc1,2,3);
rotate_in_plane(5,fc1,3,4);
cosan=-cosd(72)/(2*sind(36)*sind(36));sinan=sqrt(1-cosan**2);
an=180-angle((cosan,sinan));
new_abs_face_point(fc2,fc1,1,2,an);
new_abs_face_point(fc3,fc1,2,3,an);
new_abs_face_point(fc4,fc1,3,4,an);
new_abs_face_point(fc5,fc1,4,5,an);
new_abs_face_point(fc6,fc1,5,1,an);
rotate_in_plane(6,fc2,2,1);
rotate_in_plane(7,fc2,1,6);
rotate_in_plane(8,fc2,6,7);
rotate_in_plane(9,fc3,2,8);
rotate_in_plane(10,fc3,8,9);
rotate_in_plane(11,fc4,3,10);
rotate_in_plane(12,fc4,10,11);
rotate_in_plane(13,fc5,4,12);
rotate_in_plane(14,fc5,12,13);
rotate_in_plane(15,fc6,5,14);
new_abs_face_point(fc7,fc2,6,7,an);
new_abs_face_point(fc8,fc3,8,9,an);
new_abs_face_point(fc9,fc4,10,11,an);
new_abs_face_point(fc10,fc5,12,13,an);
rotate_in_plane(16,fc7,6,15);
rotate_in_plane(17,fc7,15,16);
rotate_in_plane(18,fc8,7,17);
rotate_in_plane(19,fc9,9,18);
rotate_in_plane(20,fc10,11,19);
normalize_obj(inst)(2,20);% opposite vertices
set_point(21)(0,0,0);% center of dodecahedron
free_points(fc)(10);
enddef;
%%\newpage
vardef def_dodecahedron(expr inst)=
save cosan,sinan,an;
new_obj_points(inst,21);% 21 points in the definition
new_obj_faces(inst,12);% 12 faces in the definition
set_dodecahedron_points(inst);
set_obj_face(1,"5,4,3,2,1","ff0fa1");
set_obj_face(2,"8,7,6,1,2","b40000");
set_obj_face(3,"10,9,8,2,3","b49b49");
set_obj_face(4,"12,11,10,3,4","b49bc0");
set_obj_face(5,"14,13,12,4,5","b4c8fe");
set_obj_face(6,"6,15,14,5,1","b4fefe");
set_obj_face(7,"6,7,17,16,15","b4fe40");
set_obj_face(8,"8,9,18,17,7","45d040");
set_obj_face(9,"10,11,19,18,9","45a114");
set_obj_face(10,"11,12,13,20,19","45a1d4");
set_obj_face(11,"14,15,16,20,13","4569d4");
set_obj_face(12,"16,17,18,19,20","112da1");
enddef;
%%\newpage\title{ICOSAHEDRON (20 faces)\kern1cm\epsfbox{icosa.ps}}
%%Two faces of an icosahedron are linked in the following way:
%% \vc{\epsfbox{vect-fig.4}} where $h=c\sqrt3/2$
%% $d$ is also a diagonal in a pentagon: \vc{\epsfbox{vect-fig.5}}
%% $c=2r\sin(\pi/5)$,
%% $d=2r\sin(2\pi/5)=2c\cos(\pi/5)$
%% The angle between two faces is computed as follows:
%% \vc{\epsfbox{vect-fig.6}}
%% We have ${(2\cos(\pi/5))}^2=2{(\sqrt3/2)}^2-2{(\sqrt3/2)}^2\cos\alpha$
%% Thus $cos\alpha=1-{8\over3}\cos^2(\pi/5)$
%%\newpage
def set_icosahedron_points(expr inst)=
set_point(1)(0,0,0);set_point(2)(1,0,0);
set_point(3)(cosd(60),sind(60),0);% 60=360/6
cosan=1-8/3*cosd(36)*cosd(36);sinan=sqrt(1-cosan**2);
an=180-angle((cosan,sinan));
new_face_point(4,1,2,3,an);
new_face_point(5,2,3,1,an);
new_face_point(6,3,1,2,an);
new_face_point(7,2,4,3,an);
new_face_point(8,3,5,1,an);
new_face_point(9,1,6,2,an);
new_face_point(10,3,4,7,an);
new_face_point(11,3,7,5,an);
new_face_point(12,1,8,6,an);
normalize_obj(inst)(1,10);% opposite vertices
set_point(13)(0,0,0);% center of icosahedron
enddef;
vardef def_icosahedron(expr inst)=
save cosan,sinan,an;
new_obj_points(inst,13);% 12 vertices and the center
new_obj_faces(inst,20);% 20 faces in the definition
set_icosahedron_points(inst);
set_obj_face(1,"3,2,1","b40000");
set_obj_face(2,"2,3,4","ff0fa1");
set_obj_face(3,"3,7,4","b49b49");
set_obj_face(4,"3,5,7","b49bc0");
set_obj_face(5,"3,1,5","b4c8fe");
set_obj_face(6,"1,8,5","b4fefe");
set_obj_face(7,"1,6,8","b4fe40");
set_obj_face(8,"1,2,6","45d040");
set_obj_face(9,"2,9,6","45a114");
set_obj_face(10,"2,4,9","45a1d4");
set_obj_face(11,"9,4,10","4569d4");
set_obj_face(12,"4,7,10","112da1");
set_obj_face(13,"7,5,11","b4fefe");
set_obj_face(14,"5,8,11","b49bc0");
set_obj_face(15,"8,6,12","45a114");
set_obj_face(16,"6,9,12","b49b49");
set_obj_face(17,"8,12,11","b40000");
set_obj_face(18,"7,11,10","45a1d4");
set_obj_face(19,"12,10,11","b4c8fe");
set_obj_face(20,"9,10,12","ff0fa1");
enddef;
%%\newpage\title{General draw functions}
def draw_polyhedron(expr name)=
draw_faces(name);
enddef;
let draw_tetrahedron=draw_polyhedron;
let draw_cube=draw_polyhedron;
let draw_octahedron=draw_polyhedron;
let draw_dodecahedron=draw_polyhedron;
let draw_icosahedron=draw_polyhedron;
let new_poly=assign_obj;
endinput
|