/usr/share/texmf-texlive/metapost/garrigues/garrigues.mp is in texlive-metapost 2009-15.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 | %-*- coding: utf-8 -*-
% Damien Garrigues' ``nomogramme,'' reproduced from:
%
% @Article{garrigues:chronometrie1939,
% author = "Damien Garrigues",
% title = "{Généralisation de la formule pascale de Gauss:
% Nomogramme du Calendrier perpétuel}",
% journal = "Annales françaises de chronométrie",
% year = "1939",
% date = "1er trimestre 1939",
% volume = "",
% number = "",
% pages = "47-60",
% month = "",
% language = "french",
% }
%
%
% Denis Roegel
% 10-11 June 2001: initial version (complete, but not meant to be
% described in an article)
%
% 16 October 2008: improved version using latexmp
% 19 October 2008: some changes to make it more logical
% (in particular, col4 has been renumbered from the bottom)
% 20-24 October 2008: more changes and restructuration of the code,
% improvements in labels and braces
% 3-7 November 2008: addition of the special case of epact 25 which
% had previously been forgotten (footnote (a) in
% the Easter table area)
%
%
%
% Only part of the ``nomogramme'' is reproduced,
% and this version is not completely identical to the original.
% Some of the idiosyncrasies of the original drawing are difficult
% to reproduce algorithmically and the purpose is not to create an
% exact copy.
%
% It should also be noted that the code is much more complex than
% it needs to be for the pure reproduction of Garrigues' drawing,
% because we wanted in addition to show how the drawing is constructed,
% and provide a number of partial views. As a consequence, the code
% has been broken into many different pieces, and some related pieces
% had to be put in different macros.
%
% For detailed explanations, see the accompanying article.
input latexmp % for flexible latex labels
input rboxes % for round boxes in column 10
numeric u;
u=1mm;
labeloffset:=7bp;
numeric th_ex;
th_ex=.5pt; % thickness of example dashed lines
% label shifts in column 8:
numeric col_shift_eight_a,col_shift_eight_b;
col_shift_eight_a=6u;
col_shift_eight_b=10u;
def whateverpair=(whatever,whatever) enddef;
% this macro formats the epact so that it fits on two characters
% (using a phantom 0 on the left)
def ep_st(expr i)=
if i=0: textext("\phantom{0}$\star$")
elseif i<10:
textext("\phantom{0}"&decimal(i))
else:
textext(decimal(i))
fi
enddef;
% this macro formats a number on two digits, adding a phantom 0 when
% necessary
def gstring(expr i)=
if i<10:
textext("\vphantom{(}\phantom{0}"&decimal(i))
else:
textext("\vphantom{(}"&decimal(i))
fi
enddef;
def gpstring(expr i)=
if i<10:
textext("(\phantom{0}"&decimal(i)&")")
else:
textext("("&decimal(i)&")")
fi
enddef;
% this macro adds a label within the Easter area at position (x,y)
def label_easter_slot(expr x,y,lab)=
label(lab,.5[s[x]r[y],s[x+1]l[y+1]]);
enddef;
% transform 1->A, 2->B, 3->C, 4->D, 5->E, 6->F, 7->G
% for the correct display of the dominical letter
def DL(expr i)=
char(64+i)
enddef;
% i is the point number in column 2 (1 at the bottom),
% and this macro returns a pair:
% a) the Golden number associated to this point
% b) the Julian epact associated to this point
vardef gn_epact(expr i)=
save G,JE;
G=1+((9-11i) mod 19);
JE=(11G-3) mod 30;
(G,JE) % value returned
enddef;
% i is the point number in column 2 (1 at the bottom),
% and this macro returns a pair:
% a) the Golden number associated to this point
% b) the corresponding point in column 4 (1 at the bottom)
% (col. 4 = Julian epact)
vardef gn_epactl(expr i)=
save G,JE,JEL;
G=1+((9-11i) mod 19);
JE=(11G-3) mod 30;
JEL=30-((JE+12) mod 30);
(G,JEL) % value returned
enddef;
vardef sval(text sec)(text f)=
save s;string s;
% we build a string with space-separated values:
for $=sec:
if unknown s:
s=f $;
else:
s:=s & " " & f $;
fi;
endfor;
s
enddef;
% draw the values of the Gregorian secular parts in column 8;
% each call corresponds to one line
% i=circle from the bottom (i=1 to 4)
% j=line within the circle (j=1 at the top)
vardef secular_year(expr i,j)(text sec)=
save vd;
vd=4u; % vertical shift of the first line
label(textext(sval(sec)(decimal)) scaled .5,
col8[2i-1]+(10u,vd-(j-1)*.5vd));
enddef;
def tddec expr i=
if i<10: "0" & decimal(i)
else:
decimal(i)
fi
enddef;
% i=box number, from 1 (at the bottom) to 7 (at the top)
% j=1 or 3 (1 for the line at the top of a box, 3 for the line at the bottom)
vardef yn(expr i,j)(text y)=
save vd;
vd=2u; % vertical shift of the first line
label(textext(sval(y)(tddec)) scaled .5,
col10[i]+(0,vd-(j-1)*vd));
enddef;
% these numbers always appear at a fixed position:
def yn_left(expr i)(text y)=
label.rt(textext(sval(y)(tddec)) scaled .5,col10[i]+(-10u,0));
enddef;
% these numbers always appear at a fixed position:
def yn_right(expr i)(text y)=
label.lft(textext(sval(y)(tddec)) scaled .5,col10[i]+(10u,0));
enddef;
% list is a string with comma-separated values
% l is the line number (1 at the bottom)
vardef col_six_f(expr list,l)=
save n,i;n=0;
for $=scantokens(list):
n:=n+1;
endfor;
% n is now the number of values in the list
i=0;
for $=scantokens(list):
i:=i+1;
if n>1:
% if there is more than 1 value, the extreme values
% are put at 2u below and above the center,
% and the other values (if any) are spread evenly
% in-between
label(textext(decimal $) scaled .7,
col6a[l]+(0,-2u+(i-1)*(4u/(n-1))));
else:
% if there is only one value, it is centered;
% there is only one such case
label(textext(decimal $) scaled .7,col6a[l]);
fi;
endfor;
enddef;
vardef col_one_three_f(expr list,l,c)=
save n,i;n=0;
for $=scantokens(list):
n:=n+1;
endfor;
i=0;
for $=scantokens(list):
i:=i+1;
label(textext(if c=3: (tddec $) else: decimal $ fi)
scaled .6,
col[c][l]+((if c=3: 2.5u else: 2u fi,0)
rotated (180-(i-1)*360/n)));
endfor;
enddef;
% variables for the regular columns and circle radiuses
pair col[][],col[]a[];
numeric height;height=150u; % vertical dimension of the drawing
numeric diam[];
% variables for labels
string col[][]st;
% variables for the Easter table:
pair B,C;
pair s[]r[],s[]l[];
% define the points in columns 1-7
vardef define_first_cols=
save E;
diam1=(height-18*.5)/18;
for i:=1 upto 19:
col1[i]=(0,(i-1)*height/18);
endfor;
for i:=1 upto 19:
col3[i]=(40u,(i-1)*height/18);
endfor;
for i:=1 upto 37:
col2[i]=((xpart(col1[1])+xpart(col3[1]))/2,
.5*(i-1)*height/18);
endfor;
for i:=1 upto 37:
E:=ypart(gn_epactl(i));
col4[E]=(60u,(E-1)*height/29);
endfor;
for i:=1 upto 30:
col6[i]=(110u,(i-1)*height/29);
endfor;
for i:=1 upto 58:
col5[i]=((xpart(col4[1])+xpart(col6[1]))/2,.5*(i-1)*height/29);
endfor;
for i:=1 upto 30:
% the circles for column 6 appear alternately
% on the right and on the left of the center corresponding to col6
if i mod 2=0:
col6a[i]=col6[i]-(8u,0);
else:
col6a[i]=col6[i]+(8u,0);
fi;
endfor;
for i:=1 upto 30:
% the values in column 7 are shifted vertically by 20u:
col7[i]=(130u,20u+(i-1)*(height-20u)/29);
endfor;
enddef;
% define strings containing the numbers in the circles of column 1
vardef define_col_one_labels=
save p;
for i=0 upto 84: % only S=0 to 84 are considered
p:=1+(9+3i) mod 19;
if unknown col1[p]st:
col1[p]st=decimal(i);
else:
col1[p]st
:=col1[p]st & "," & decimal(i);
fi;
endfor;
enddef;
% define strings containing the numbers in the circles of column 3
vardef define_col_three_labels=
save p;
for i=0 upto 99:
p:=1+(15+12i) mod 19;
if unknown col3[p]st:
col3[p]st=decimal(i);
else:
col3[p]st
:=col3[p]st & "," & decimal(i);
fi;
endfor;
enddef;
% define strings containing the numbers in the circles of column 6
vardef define_col_six_labels=
save p,M;
for i=15 upto 84: % all secular parts of column 6
% find the line number where it goes
M:=(15+i-floor(i/4)-floor((8i+13)/25)) mod 30;
p:=1+(M+21) mod 30;
if unknown col6[p]st:
col6[p]st=decimal(i);
else:
col6[p]st:=col6[p]st & "," & decimal(i);
fi;
endfor;
enddef;
def draw_col_one_points=
for i:=1 upto 19:
drawdot col1[i];
endfor;
enddef;
def draw_col_two_points=
for i:=1 upto 37:
drawdot col2[i];
endfor;
enddef;
def draw_col_three_points=
for i:=1 upto 19:
drawdot col3[i];
endfor;
enddef;
vardef draw_col_four_points=
save GNE;pair GNE;
for i:=1 upto 37:
GNE:=whateverpair;GNE=gn_epactl(i);
drawdot col4[ypart(GNE)];
endfor;
enddef;
def draw_col_five_points=
for i:=1 upto 58:
drawdot col5[i];
endfor;
enddef;
def draw_col_six_points=
for i:=1 upto 30:
drawdot col6[i];
endfor;
enddef;
def draw_col_seven_points=
for i:=1 upto 30:
drawdot col7[i];
endfor;
enddef;
def draw_col_eight_points=
for i=1 upto 7:
drawdot col8[i];
endfor;
enddef;
def draw_col_nine_points=
for i=1 upto 13:
drawdot col9[i];
endfor;
enddef;
def draw_col_ten_points=
for i=1 upto 7:
drawdot col10[i];
endfor;
enddef;
def draw_col_eleven_points=
for i=1 upto 7:
drawdot col11[i];
endfor;
enddef;
vardef draw_block_one_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_one_points;
draw_col_two_points;
draw_col_three_points;
pickup oldpen;
enddef;
vardef draw_block_two_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_two_points;
%draw_col_three_points;
draw_col_four_points;
pickup oldpen;
enddef;
vardef draw_block_three_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_four_points;
draw_col_five_points;
draw_col_six_points;
pickup oldpen;
enddef;
vardef draw_block_four_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_five_points;
%draw_col_six_points;
draw_col_seven_points;
pickup oldpen;
enddef;
vardef draw_block_five_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_eight_points;
draw_col_nine_points;
draw_col_ten_points;
pickup oldpen;
enddef;
vardef draw_block_six_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
%draw_col_eight_points;
draw_col_nine_points;
draw_col_eleven_points;
pickup oldpen;
enddef;
vardef draw_block_seven_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_col_seven_points;
draw_col_eleven_points;
pickup oldpen;
enddef;
% draw the various points in the columns:
vardef draw_all_points=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw_block_one_points;
draw_block_three_points;
draw_block_five_points;
draw_block_seven_points;
pickup oldpen;
enddef;
vardef draw_block_two_connections=
for i:=1 upto 37:
draw col2[i]--col4[ypart(gn_epactl(i))];
endfor;
enddef;
def draw_block_four_connections=
for i:=1 upto 58:
draw col5[i]--col7[1+((i-1) mod 30)];
endfor;
enddef;
def draw_block_six_connections=
for i=1 upto 13:
draw col9[i]--col11[1+(13-i) mod 7];
endfor;
enddef;
% draw the lines connecting the points
def draw_all_connections=
draw_block_two_connections;
draw_block_four_connections;
draw_block_six_connections;
enddef;
% connecting the secular part to the last two digits of the year:
vardef draw_block_one_example=
save oldpen;
oldpen=savepen;
draw col1[10]--col3[9] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col1[10]--col3[9] dashed evenly;
pickup oldpen;
enddef;
% connecting the Golden number to the Julian epact:
vardef draw_block_two_example=
save oldpen;
oldpen=savepen;
draw col2[18]--col4[29] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col2[18]--col4[29] dashed evenly;
pickup oldpen;
enddef;
% connecting the Julian epact to M:
vardef draw_block_three_example=
save oldpen;
oldpen=savepen;
draw col4[29]--col6[16] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col4[29]--col6[16] dashed evenly;
pickup oldpen;
enddef;
% connecting the Gregorian epacts:
vardef draw_block_four_example=
save oldpen;
oldpen=savepen;
draw col5[44]--col7[14] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col5[44]--col7[14] dashed evenly;
pickup oldpen;
enddef;
% connecting the secular part of the year to the
% last two digits, in order to obtain the dominical letter:
vardef draw_block_five_example=
save oldpen;
oldpen=savepen;
draw col8[7]--col10[5] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col8[7]--col10[5] dashed evenly;
pickup oldpen;
enddef;
% connecting the dominical letters together:
vardef draw_block_six_example=
save oldpen;
oldpen=savepen;
draw col9[11]--col11[3] withcolor white; % erasing the old connection
pickup pencircle scaled th_ex;
draw col9[11]--col11[3] dashed evenly;
pickup oldpen;
enddef;
vardef draw_block_seven_example=
save oldpen;
oldpen=savepen;
pickup pencircle scaled th_ex;
% connecting all Easter dates with the same dominical letter A:
draw col11[3]--C dashed evenly;
% connecting all Easter dates with the same Gregorian epact value:
draw col7[14]--B dashed evenly;
% showing the Easter date:
pickup pencircle scaled 3pt;
draw (col11[3]--C) intersectionpoint (col7[14]--B);
pickup oldpen;
enddef;
% example for 1939:
def draw_all_example=
draw_block_one_example;
draw_block_two_example;
draw_block_three_example;
draw_block_four_example;
draw_block_five_example;
draw_block_six_example;
draw_block_seven_example;
enddef;
def draw_dbl_circle(expr da,db,c) text options=
unfill fullcircle scaled db shifted c;
draw fullcircle scaled db shifted c;
draw fullcircle scaled da shifted c options;
enddef;
% circles in column 1:
def draw_col_one_circles=
for i:=1 upto 19:
draw_dbl_circle(.9diam1,diam1,col1[i]);
endfor;
enddef;
% extra labels for block one:
def draw_col_one_circle_labels=
for i:=1 upto 19:
label.lft(textext(decimal((4+8*(i-1)) mod 19)),col1[i]+7u*left);
endfor;
enddef;
% circles in column 3:
def draw_col_three_circles=
for i:=1 upto 19:
% this produces a simple circle:
draw_dbl_circle(diam1,diam1,col3[i]);
endfor;
enddef;
% extra labels for block one:
def draw_col_three_circle_labels=
for i:=1 upto 19:
label.lft(textext(decimal((13+8*(i-1)) mod 19)),col3[i]+13u*right);
endfor;
enddef;
def draw_col_six_circles=
% circles around column 6:
for i:=1 upto 30:
draw_dbl_circle(.9diam1,diam1,col6a[i]);
endfor;
% special case of the Julian calendar:
draw_dbl_circle(.9diam1,diam1,col6[7]-(17u,0)) dashed evenly;
drawarrow (col6[7]-(17u,0))--col6[7]
cutbefore (fullcircle scaled diam1 shifted (col6[7]-(17u,0)));
label(textext("\vbox{\halign{\hfil#\hfil\cr Jul.\cr Cal.\cr}}") scaled .7,
col6[7]-(17u,0));
enddef;
% circles around column 8:
def draw_col_eight_circles=
for i=1 upto 7:
draw_dbl_circle(.9diam2,diam2,col8[i]-(col_shift_eight_a,0));
if i mod 2=1:
draw_dbl_circle(.9diam3,diam3,col8[i]+(col_shift_eight_b,0));
fi;
endfor;
enddef;
def draw_block_one_circles=
draw_col_one_circles;
draw_col_one_circle_labels;
draw_col_three_circles;
draw_col_three_circle_labels;
enddef;
def draw_block_two_circles=
draw_col_three_circles;
enddef;
def draw_block_three_circles=
draw_col_six_circles;
enddef;
def draw_block_four_circles=
draw_col_six_circles;
enddef;
def draw_block_five_circles=
draw_col_eight_circles;
enddef;
def draw_block_six_circles=
draw_col_eight_circles;
enddef;
def draw_all_circles=
draw_col_one_circles;
draw_col_three_circles;
draw_col_six_circles;
draw_col_eight_circles;
enddef;
% display values in circles of column 1:
def draw_labels_col_one=
for i=1 upto 19:
col_one_three_f(col1[i]st,i,1);
endfor;
label(textext("I"),col1[1]-(0,10u));
label(textext("$S$") scaled 1.5,col1[19]+(col1[19]-col1[18]));
enddef;
def draw_labels_col_two_a=
label(textext("II"),col2[1]-(0,10u));
enddef;
% this is an extended display
vardef draw_labels_col_two_b=
save GNE;pair GNE;
for i:=1 upto 37:
GNE:=whateverpair;GNE=gn_epact(i);
% some of the values here are written twice, but this causes no harm:
label.rt(gstring(xpart(GNE)),col2[i]);
label.lft(gstring(ypart(GNE)),col2[i]);
endfor;
label.lft(textext("$E_J$"),col2[37]+(col2[37]-col2[36]));
label.rt(textext("$G$"),col2[37]+(col2[37]-col2[36]));
enddef;
% this is an extended display
vardef draw_labels_col_two_c=
save GNE;pair GNE;
for i:=1 upto 37:
GNE:=whateverpair;GNE=gn_epact(i);
% some of the values here are written twice, but this causes no harm:
label.lft(gstring(xpart(GNE)),col2[i]+15u*left);
label.lft(gpstring(ypart(GNE)),col2[i]+5u*left);
endfor;
label.lft(textext("$G$"),col2[37]+(col2[37]-col2[36])+15u*left);
label.lft(textext("$E_J$"),col2[37]+(col2[37]-col2[36])+5u*left);
enddef;
% display values in circles of column 3:
def draw_labels_col_three=
for i=1 upto 19:
col_one_three_f(col3[i]st,i,3);
endfor;
label(textext("III"),col3[1]-(0,10u));
label(textext("$A$") scaled 1.5,col3[19]+(col3[19]-col3[18]));
enddef;
vardef draw_labels_col_four_base=
save GNE;pair GNE;
for i:=1 upto 37:
GNE:=whateverpair;GNE=gn_epactl(i);
% some of the values here are written twice, but this causes no harm:
label.rt(gstring(xpart(GNE)),col4[ypart(GNE)]);
endfor;
enddef;
% display labels in column 4 (values of the Golden number)
def draw_labels_col_four_a=
draw_labels_col_four_base;
label.lft(textext("IV"),col4[1]-(0,10u));
label.rt(textext("Gold. N.") rotated 90,col4[1]-(0,10u));
enddef;
def draw_labels_col_four_b=
draw_labels_col_four_base;
label(textext("IV"),col4[1]-(0,10u));
enddef;
vardef draw_labels_col_four_c=
save GNE,GNEL;pair GNE,GNEL;
for i:=1 upto 37:
GNEL:=whateverpair;GNEL=gn_epactl(i);
GNE:=whateverpair;GNE=gn_epact(i);
label.rt(gpstring(ypart(GNE)),col4[ypart(GNEL)]+5u*right);
endfor;
label.rt(textext("$G$"),col4[29]+(col4[29]-col4[28]));
label.rt(textext("$E_J$"),col4[29]+(col4[29]-col4[28])+5u*right);
enddef;
vardef draw_labels_col_four_d=
save GNE,GNEL;pair GNE,GNEL;
for i:=1 upto 37:
GNEL:=whateverpair;GNEL=gn_epactl(i);
GNE:=whateverpair;GNE=gn_epact(i);
label.lft(gstring(xpart(GNEL)),col4[ypart(GNEL)]+8u*left);
label.lft(gpstring(ypart(GNE)),col4[ypart(GNEL)]);
endfor;
label.lft(textext("$G$"),col4[29]+(col4[29]-col4[28])+8u*left);
label.lft(textext("$E_J$"),col4[29]+(col4[29]-col4[28]));
label.lft(textext("IV"),col4[1]-(0,10u));
enddef;
def draw_labels_col_five=
for i=1 upto 58:
label.lft(ep_st((24-i) mod 30) scaled .7,col5[i]);
endfor;
label.lft(textext("$E_G$"),col5[58]+2(col5[58]-col5[57]));
label(textext("V"),col5[1]-(0,10u));
enddef;
def draw_labels_col_five_a=
label(textext("V"),col5[1]-(0,10u));
enddef;
% display values in circles of column 6:
def draw_labels_col_six_a=
for i=1 upto 30:
col_six_f(col6[i]st,i);
endfor;
label(textext("VI"),col6[1]-(0,10u));
label(textext("$S$") scaled 1.5,col6[30]+2(col6[30]-col6[29]));
enddef;
vardef draw_labels_col_six_b=
save lo;
lo=labeloffset;
labeloffset:=3bp;
for i=1 upto 30:
label.rt(gstring((7-i) mod 30) scaled .5,col6[i]);
endfor;
labeloffset:=lo;
label(textext("$15-M$") scaled .7,col6[30]+.5(col6[30]-col6[29])+2u*right);
enddef;
% display values of the Gregorian epact
def draw_labels_col_seven_a=
for i:=1 upto 30:
label.rt(ep_st((24-i) mod 30),col7[i]);
endfor;
label(textext("VII"),col7[1]-(0,20u));
label.rt(textext("Epact:") rotated 90,col7[1]-(0,10u));
enddef;
def draw_labels_col_seven_b=
draw_labels_col_seven_a;
label.rt(textext("$E_G$"),col7[30]+(col7[30]-col7[29]));
enddef;
def draw_labels_col_seven_c=
for i:=1 upto 30:
label.lft(ep_st((24-i) mod 30),col7[i]);
endfor;
label.lft(textext("$E_G$"),col7[30]+2(col7[30]-col7[29]));
label(textext("VII"),col7[1]-(0,20u));
label.lft(textext("Epact:") rotated 90,col7[1]-(0,10u));
enddef;
def draw_block_one_labels=
draw_labels_col_one;
draw_labels_col_two_a;
draw_labels_col_three;
enddef;
def draw_block_two_labels=
draw_labels_col_two_a;
draw_labels_col_four_b;
enddef;
def draw_block_three_labels=
draw_labels_col_four_d;
draw_labels_col_five;
draw_labels_col_six_a;
draw_labels_col_six_b;
enddef;
def draw_block_four_labels=
draw_labels_col_five;
draw_labels_col_seven_b;
enddef;
% draw the labels in columns 1-7
def draw_first_labels=
draw_labels_col_one;
draw_labels_col_three;
draw_labels_col_four_a;
draw_labels_col_five_a;
draw_labels_col_six_a;
draw_labels_col_seven_a;
enddef;
def define_corners=
corner1=whatever[col7[0],B]
=C+whatever*up;
corner3=.3[B,col7[31]]; % can be positioned freely
corner2=(C--corner3) intersectionpoint (B--corner1);
corner4=whatever[B,col7[31]]
=C+whatever*up;
enddef;
vardef define_easter_table=
save corner,p;
pair corner[];
% B and C can be positioned freely:
C=(xpart(col7[1])+10u,-10u);
B=(xpart(C)+150u,ypart(col7[5]));
% we define two additional points in column 7,
% one above the 30th, and one below the first:
col7[1]-col7[0]=col7[31]-col7[30]=col7[2]-col7[1];
% these four corners define the shape of area XI:
define_corners;
% area XI is divided into 8 slices (9 boundaries,
% only 8 of which are drawn)
for i=1 upto 9:
s[i]l0=s[i]r0=(((i-1)/8))[corner4,corner3];
s[i]l5=s[i]r5
=whatever[corner1,corner2]=whatever[s[i]l0,C];
endfor;
% each of the eight slices is itself divided four times:
for i=1 upto 8: % i varies on the ``vertical lines,''
% from left to right; 8 vertical lines enclose the
% 35 easter slots;
for j=1 upto 4: % j varies on the horizontal inner divisions
p:=30-i-(j-1)*7;
% from top to bottom
if i<8:
% division leaving to the right of vertical line i
s[i]r[j]=(s[i]l0--s[i]l5)
intersectionpoint (B--.5[col7[p],col7[p-1]]);
fi;
if i>1:
% division leaving to the left of vertical line i
s[i]l[j]=(s[i]l0--s[i]l5)
intersectionpoint
(B--.5[col7[p+1],col7[p]]);
fi;
endfor;
endfor;
enddef;
% draw points B and C
vardef draw_B_and_C=
save oldpen;
oldpen=savepen;
draw_dbl_circle(.8*3u,3u,B);
draw_dbl_circle(.8*3u,3u,C);
pickup pencircle scaled 2pt;
drawdot B;drawdot C;
pickup oldpen;
label.ulft(textext("$B$"),B);
label.ulft(textext("$C$"),C);
enddef;
% draw the slices in the Easter table:
vardef draw_easter_table_slices=
save oldpen;
oldpen=savepen;
for i=1 upto 8:
draw s[i]l0--s[i]l5;
endfor;
draw s8l5--s8l0--s1l0--s1l5--cycle;
for i=1 upto 7:
for j=1 upto 4:
draw s[i]r[j]--s[i+1]l[j];
endfor;
endfor;
pickup pencircle scaled 2pt;
% March/April divisions:
draw s8l3--s7r3--s7l3--s6r3--s6l3--s5r3--
s5l4--s4r4--s4l4--s3r4--s3l4--
s2r4--s2l4--s1r4;
pickup oldpen;
enddef;
vardef draw_arrow_label@#(expr lab,c,s)=
save oldpen;
oldpen=savepen;
pickup pencircle scaled 2pt;
draw (c);
pickup oldpen;
drawarrow (c+s)--(c+u*unitvector(s));
label@#(lab,c+s);
enddef;
vardef draw_easter_table_details=
save corner;
pair corner[];
define_corners;
draw_arrow_label.top(textext("\tt corner4"),corner4,(0,10u));
draw_arrow_label.urt(textext("\tt corner3"),corner3,10u*dir(20));
draw_arrow_label.lrt(textext("\tt corner2"),corner2,10u*dir(-20));
draw_arrow_label.llft(textext("\tt corner1"),corner1,25u*dir(-132));
draw_arrow_label.top(textext("\tt s2l0"),s[2]l[0],30u*dir(80));
draw_arrow_label.rt(textext("\tt s2r0"),s[2]r[0],40u*dir(10));
draw_arrow_label.top(textext("\tt s4l0"),s[4]l[0],12u*dir(90));
draw_arrow_label.rt(textext("\tt s4r0"),s[4]r[0],20u*dir(5));
draw_arrow_label.lrt(textext("\tt s7l3"),s[7]l[3],40u*dir(-10));
draw_arrow_label.lrt(textext("\tt s7r3"),s[7]r[3],40u*dir(-40));
draw_arrow_label.rt(textext("\tt s7r2"),s[7]r[2],60u*dir(5));
draw corner1--corner2 dashed evenly;
draw corner4--corner3 dashed evenly;
draw corner2--corner3 dashed evenly;
enddef;
% draw the labels in the Easter table:
vardef draw_easter_table_labels=
save laban,march,april,sl,j;
string march,april;
for i=1 upto 35: % 35 dates from March 22 till April 25
sl:=1+(7-(i mod 7)) mod 7;
j:=4-floor((i-1)/7);
label_easter_slot(sl,j,textext(if i=35:"25 (a)" else:
decimal(if i>10:i-10 else: i+21 fi) fi)
if i<8: scaled .7 fi);
endfor;
laban=angle(s8l0-s8l5);
march="$\underbrace{\kern"
& decimal(arclength(s8l3--s8l5)-5)
& "bp}_{\hbox{MARCH}}$";
april="$\underbrace{\kern"
& decimal(arclength(s8l0--s8l3)-5)
& "bp}_{\hbox{APRIL}}$";
label(textext(march) rotated laban,
.5[s8l3,s8l5]+3u*unitvector((s8l0-s8l5) rotated -90));
label(textext(april) rotated laban,
.5[s8l0,s8l3]+3u*unitvector((s8l0-s8l5) rotated -90));
enddef;
def draw_easter_table=
draw_easter_table_slices;
draw_B_and_C;
draw_easter_table_labels;
enddef;
vardef define_dominical_letters=
save shift;
pair shift;
shift=(3u,3u);
for i=1 upto 8:
col11[i]=whatever[C,.5[s[i]r0,s[i+1]l0]]
=whatever[s1r0+shift,s8l0+shift];
endfor;
enddef;
def draw_labels_col_eleven=
for i=1 upto 7:
label.ulft(textext(DL(1+(10-i) mod 7)),col11[i]);
endfor;
label(textext("XI") rotated (angle(s1r0-s8l0)-90),
.6[col11[8],col11[7]]);
enddef;
% define columns 8-11
def define_last_cols=
diam2=7u;
diam3=13u;
for i=1 upto 7:
col8[i]=s8l0+(15u,10u+(i-1)*ypart(s1l0-s8l0)/7);
col10[i]=col8[i]+(50u,0);
endfor;
for i=1 upto 13:
col9[i]=(xpart(col8[1]+col10[1])/2,
ypart(col8[1])+(i-1)*(ypart(col8[7]-col8[1]))/12);
endfor;
define_dominical_letters;
enddef;
vardef draw_labels_col_eight_julian=
save v;
for i=1 upto 7:
for j=1 upto 3:
v:=((4+i) mod 7)+(j-1)*7;
label(textext(decimal(v)) scaled .5,
col8[i]-(col_shift_eight_a,0)
+((0,1.4u) rotated ((j-1)*120)));
endfor;
endfor;
enddef;
def draw_labels_col_eight_gregorian=
% the following lines could be parameterized, but it's not worth it
secular_year(1,1)(16,20,24);
secular_year(1,2)(28,32,36,40);
secular_year(1,3)(44,48,52,56);
secular_year(1,4)(60,64,68,72);
secular_year(1,5)(76,80,84);
secular_year(2,1)(17,21);
secular_year(2,2)(25,29,33,37);
secular_year(2,3)(41,45,49,53);
secular_year(2,4)(57,61,65,69);
secular_year(2,5)(73,77,81);
secular_year(3,1)(18,22);
secular_year(3,2)(26,30,34,38);
secular_year(3,3)(42,46,50,54);
secular_year(3,4)(58,62,66,70);
secular_year(3,5)(74,78,82);
secular_year(4,1)(15,19,23);
secular_year(4,2)(27,31,35,39);
secular_year(4,3)(43,47,51,55);
secular_year(4,4)(59,63,67,71);
secular_year(4,5)(75,79,83);
enddef;
vardef draw_labels_col_ten=
save rbr;
rbr=rbox_radius;
rbox_radius:=15pt;
for i=1 upto 7:
rboxit.rb[i]("");
rb[i].c=col10[i];
rb[i].dx=9u;rb[i].dy=3.3u;
unfill bpath(rb[i]);
drawboxes(rb[i]);
endfor;
rbox_radius:=rbr;
yn(1,1)(3,8,14,25,31);
yn_left(1)(36,42);yn_right(1)(53,59);
yn(1,3)(64,70,81,87,92,98);
yn(2,1)(2,13,19,24,30);
yn_left(2)(41,47);yn_right(2)(52,58);
yn(2,3)(69,75,80,86,97);
yn(3,1)(1,7,12,18,29);
yn_left(3)(35,40);yn_right(3)(46,57);
yn(3,3)(63,68,74,85,91,96);
yn(4,1)(0,6,17,23,28);
yn_left(4)(34,45);yn_right(4)(51,56);
yn(4,3)(62,73,79,84,90);
yn(5,1)(5,11,16,22,33);
yn_left(5)(39,44);yn_right(5)(50,61);
yn(5,3)(67,72,78,89,95);
yn(6,1)(4,10,21,27,32);
yn_left(6)(38,49);yn_right(6)(55,60);
yn(6,3)(66,77,83,88,94);
yn(7,1)(9,15,20,26,37);
yn_left(7)(43,48);yn_right(7)(54,65);
yn(7,3)(71,76,82,93,99);
label(textext("X"),col10[1]-(0,10u));
label(textext("$A$") scaled 1.5,col10[7]+2(col8[7]-col8[6]));
enddef;
def draw_labels_col_ten_a=
draw_labels_col_ten;
for i=1 upto 7:
label.rt(textext(decimal((i+3) mod 7)),col10[i]+10u*right);
endfor;
enddef;
def draw_labels_col_eight_a=
draw_labels_col_eight_julian;
draw_labels_col_eight_gregorian;
label(textext("VIII"),col8[1]-(0,10u));
label(textext("J.C.") scaled 1.5,
col8[7]+(-col_shift_eight_a,0)+(col8[7]-col8[6]));
label(textext("G.C.") scaled 1.5,
col8[7]+(col_shift_eight_b,0)+(col8[7]-col8[6]));
enddef;
def draw_labels_col_eight_b=
for i=1 upto 7:
label.top(decimal(i-1),col8[i]);
endfor;
enddef;
def draw_labels_col_nine=
for i=1 upto 13:
label.rt(textext(DL(1+(3+i) mod 7)),col9[i]);
endfor;
label(textext("IX"),col9[1]-(0,10u));
label.rt(textext("Dom. L.") rotated 90,col9[1]-(0,10u));
enddef;
def draw_labels_col_nine_a=
for i=1 upto 13:
label.rt(textext(DL(1+(3+i) mod 7)
& " ("&decimal((i+3) mod 7)&")"),col9[i]);
endfor;
label(textext("IX"),col9[1]-(0,10u));
label.rt(textext("Dom. L.") rotated 90,col9[1]-(0,10u));
enddef;
def draw_block_five_labels=
draw_labels_col_eight_a;
draw_labels_col_eight_b;
draw_labels_col_nine_a;
draw_labels_col_ten_a;
enddef;
def draw_block_six_labels=
draw_labels_col_nine;
draw_labels_col_eleven;
enddef;
def draw_block_seven_labels=
draw_labels_col_seven_c;
draw_labels_col_eleven;
enddef;
def draw_all_labels=
draw_first_labels;
draw_labels_col_eight_julian;
draw_labels_col_eight_gregorian;
label(textext("VIII"),col8[1]-(0,10u));
draw_labels_col_nine;
draw_labels_col_ten;
draw_labels_col_eleven;
enddef;
def draw_block_one_brace=
label(textext("$\overbrace{\kern85bp}^{\hbox{Year}}$") scaled 1.5,
col2[37]+4(col2[37]-col2[36]));
enddef;
def draw_col_eight_brace=
label(textext("$\overbrace{\kern50bp}^{\hbox{$S$}}$") scaled 1.5,
col8[7]+2(col8[7]-col8[6])+(.5(col_shift_eight_b-col_shift_eight_a),0));
enddef;
def draw_block_five_braces=
draw_col_eight_brace;
label(textext("$\overbrace{\kern100bp}^{\hbox{Year}}$") scaled 1.5,
col9[13]+6(col9[13]-col9[12])
+(.25(col_shift_eight_b-col_shift_eight_a),0));
enddef;
def draw_block_six_brace=
draw_col_eight_brace;
enddef;
def draw_all_braces=
draw_block_one_brace;
draw_block_five_braces;
enddef;
def draw_block_one=
draw_block_one_example;
draw_block_one_circles;
draw_block_one_points; % after the circles
draw_block_one_labels;
draw_block_one_brace;
draw_labels_col_two_b;
enddef;
def draw_block_two=
draw_block_two_connections;
draw_block_two_example;
draw_block_two_points; % after the circles
draw_block_two_labels;
draw_labels_col_four_c;
draw_labels_col_two_c;
enddef;
def draw_block_three=
draw_block_three_example;
draw_block_three_circles;
draw_block_three_points; % after the circles
draw_block_three_labels;
enddef;
def draw_block_four=
draw_block_four_connections;
draw_block_four_example;
draw_block_four_points; % after the circles
draw_block_four_labels;
enddef;
def draw_block_five=
draw_block_five_example;
draw_block_five_circles;
draw_block_five_labels;
draw_block_five_points; % must be after the labels
draw_block_five_braces;
enddef;
def draw_block_six=
draw_block_six_connections;
draw_block_six_example;
draw_block_six_points; % after the example
draw_block_six_labels;
enddef;
def draw_block_seven=
draw_block_seven_example;
draw_easter_table; % after the example
draw_block_seven_labels;
draw_block_seven_points; % after the example
draw_easter_table_details;
enddef;
define_first_cols;
define_easter_table;
define_last_cols;
define_col_six_labels;
define_col_one_labels;
define_col_three_labels;
beginfig(1);
draw_all_connections;
draw_all_example;
draw_easter_table;
label(textext("\footnotesize "&
"\parbox{4cm}{\raggedright "&
"Note (a). The Gregorian years which have " &
"epact $=$ 25, dominical letter $=$ C, and " &
"Golden Number $>$ 11 have their Easter on " &
"April 18 instead of April 25. The only such " &
"years are 1954, 2049, 2106, 3165, 3260, 3317, "&
"3852, 3909, 4004, 6399, etc." &
"}"),C+35u*right);
draw_all_circles;
draw_all_labels;
draw_all_points; % after the circles and the labels
draw_all_braces;
endfig;
beginfig(11);
draw_block_one;
endfig;
beginfig(12);
draw_block_two;
endfig;
beginfig(13);
draw_block_three;
endfig;
beginfig(14);
draw_block_four;
endfig;
beginfig(15);
draw_block_five;
endfig;
beginfig(16);
draw_block_six;
endfig;
beginfig(17);
draw_block_seven;
endfig;
beginfig(21);
numeric v,w,last;
v=10u;
w=20u;
last=5;
pair P[],Q[],R[];
pickup pencircle scaled 2pt;
for i=0 upto last:
P[i]=(0,i*v);draw P[i];
Q[i]=(2w,i*v);draw Q[i];
endfor;
for i=0 upto 2last:
R[i]=(w,i*v/2);draw R[i];
endfor;
pickup pencircle scaled .5;
label.bot(textext("$p_i$"),P0);
label.bot(textext("$q_i$"),Q0);
label.bot(textext("$r_i$"),R0);
draw P2--Q3;
for i=0 upto 5:
label.lft(textext(decimal i) scaled .7,P[i]);
endfor;
for i=0 upto 5:
label.rt(textext(decimal i) scaled .7,Q[i]);
endfor;
for i=0 upto 4:
label.rt(textext(decimal i) scaled .7,R[i]);
endfor;
unfill bbox(thelabel.rt(textext("5") scaled .7,R5));
label.rt(textext("5") scaled .7,R5);
for i=6 upto 10:
label.rt(textext(decimal i) scaled .7,R[i]);
endfor;
endfig;
beginfig(25);
numeric v,w,last;
v=10u;
w=20u;
last=5;
pair P[],Q[],R[];
pickup pencircle scaled 2pt;
for i=0 upto last:
P[i]=(0,i*v);draw P[i];
Q[i]=(2w,i*v);draw Q[i];
endfor;
for i=0 upto 2last:
R[i]=(w,i*v/2);draw R[i];
endfor;
pickup pencircle scaled .5;
label.bot(textext("$p_i$"),P0);
label.bot(textext("$q_i$"),Q0);
label.bot(textext("$r_i$"),R0);
draw P2--Q3;
for i=0 upto 5:
label.lft(textext("$x_" & decimal i & "$") scaled .7,P[i]);
endfor;
for i=0 upto 5:
label.rt(textext("$y_" & decimal i & "$") scaled .7,Q[i]);
endfor;
for i=0 upto 4:
label.rt(textext("$z_" & decimal i & "$") scaled .7,R[i]);
endfor;
unfill bbox(thelabel.rt(textext("$z_5$") scaled .7,R5));
label.rt(textext("$z_5$") scaled .7,R5);
for i=6 upto 10:
label.rt(textext("$z_{" & decimal i & "}$") scaled .7,R[i]);
endfor;
endfig;
end
|